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1. Introduction 
 

It seems fair to say that there are about as many physicists who consider the magnetic monopole as a 
monster hidden in the depths of the Loch Ness, as there are who regard this idea as so necessary for the 
beauty of nature, that God cannot possibly have failed to think about it. I belong of course to the latter 
species !  

It is well known that the hypothesis of separated magnetic poles is an old one, but the present paper is 
neither devoted to its history nor to a comprehensive bibliography on the subject : there already exist 
several papers or books of this kind [1], [2], [3], [4]. Here, we shall quote only those papers that are useful 
for our purpose, which is to give arguments in favor of the hypothesis of magnetic monopoles, the 
possibility of their observation and the explanation of the fact that they were not yet observed with 
certainty.  

Therefore, we shall not survey all aspects of the problem. In particular, although this is a commonly 
favoured point of view, there will be no further mention of a possible hyper-heavy monopole. Keeping 
away from G.U.T., we shall remain in the framework of electrodynamics. On the other hand, we shall not 
confine ourselves to symmetry arguments, but shall present a wave equation for a magnetic monopole, 
which parallels the Dirac equation for the electron. This equation describes a monopole quite different 
from the one which is usually considered, but it satisfies all the electrodynamical, mechanical and gauge 
properties commonly assumed at present. Needless to say, all these "properties" are conjectural and it is 
very likely that either there are no monopoles at all (God didn't think about it) or, if there is one, there must 
be a world of monopoles, just as large and diverse as the world of electrically charged particles.    

 
2. At the beginning was symmetry 

 
In 1894, one century ago, Pierre Curie wrote a paper on "Symmetry in Physical Phenomena" [5], where 

he put forward the idea of a general constructive role of symmetry in physics and emphasized the 
importance of dissymmetry in the appearance of phenomena. He described the Curie groups : a 
classification of physical invariance groups of limited objects in tridimensional space, in analogy with 
crystallographic groups, which are the invariance groups of an unlimited periodic medium. As an example, 
he described the symmetry of electromagnetic phenomena — and therefore of fields — entirely on the 
basis of experiments, without using Maxwell's equations (as, for instance, in [7]). He added a short paper 
[6] in which the possibility of "free magnetic charges" was shown as a consequence of the laws of 
symmetry of electromagnetic field1.  

There is a difference between electric and magnetic charges, which is a consequence of the fact that the 
electric field is a polar vector and the magnetic field is an axial one2 : E has the symmetry of a radial 

 
1 It is said in reference [2] that Curie "suggests out of the blue that magnetic charge might exist". It is no 
more "out of the blue" than all the predictions made in our century on the basis of symmetry, including the 
famous paper by Dirac himself on magnetic poles. Moreover, it was the first prediction of this kind.  
2 It is worth noticing that, despite the obvious difference between the two fields it is not so easy to prove 
experimentally which is polar and which is axial [5]. 
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vector r, a velocity v, a linear momentum p, a force F, while H has the symmetry of the external product of 
two polar vectors, like r×r' or r×p.  

As a consequence, consider the force exerted by each field on the corresponding charge : 
 
F = eE,       F = gH  (2.1) 
 
If we assume that these law of force are P-invariant, the electric charge must be a scalar and the 

magnetic charge a pseudo-scalar : the image of an electric charge has the same sign, while the image of a 
north pole is a south pole and we find the following symmetry laws.  
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One can see on Fig.1 that, while the electric current is a polar vector, like the electric field, the magnetic 

current must be axial like the magnetic field, in virtue of the definitions : 
 
J = ev,       K = gv (2.2) 

   
It is astonishing to find a pseudoscalar physical constant g, because a physical constant has no tensorial 

variance : for instance, c does not vary as a velocity and h does not vary as an action or as a kinetic 
moment. Only physical quantities can have tensorial variances, not constants, and here, there is a confusion 
between the value of a constant and the variance of the corresponding physical quantity. We shall see that 
it is not so in quantum mechanics : the elementary magnetic charge will be a scalar, as it must be, but 
physical properties will be given by a pseudo-scalar charge operator. Magnetic current will be an axial 
vector different from (2.2).  

In other words, Fig.1 that summarizes the work of Pierre Curie is true, but eq. (2.1) and (2.2) are not, 
and this is very important because a classical objection against the hypothesis of magnetic poles is that it is 
purely formal [2], [7], [8]. Actually, let us introduce densities of electric and magnetic currents and charges 
J, K, ρ, µ, in Maxwell's equations : 

 

curl H − 1c ŽE
Žt

 = 4π
c  J ;  − curl E − 1c ŽE

Žt
 = 4π

c  K
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div E = 4πρ ;  div H = 4πµ  (2.3) 
 
This system is invariant under the transformation : 
 
 E = E ' cos γ + H ' sin γ ;  H = − E ' sin γ + H ' cos γ 
ρ = ρ' cos γ + µ' sin γ  ;    µ = − ρ' sin γ + µ' cos γ 
J = J' cos γ + K' sin γ ;   K = − J' sin γ + K' cos γ  (2.4) 

 
And the argument is that, by suitably choosing the angle γ ,    one can arbitrarily eliminate magnetic (or 

electric) quantities. But this is true only if J and K are colinear, and it will not be true in our case, which 
invalidates the argument. 

 
3. The Birkeland-Poincaré effect 

 
In 1896, Birkeland introduced a straight magnet in a Crookes' tube and was puzzled by a convergence 

of the cathodic beam which does not depend on the orientation of the magnet [9]. Poincaré explained the 
effect by the action of a magnetic pole on the electric charges of the beam (these charges were only 
conjectured at that time) ; he showed that it is due to the action of only one pole of the magnet, and that, for 
symmetry reasons, it must be independent of the sign of the pole [10].  
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Fig. 2  The Birkeland-Poincaré effect. When a straight magnet 
is introduced in a Crookes' tube, the cathodic rays converge 
whatever the orientation of the magnet. Above : the cases 
considered by Birkeland ; below : two cases corresponding to 
the same description given by Poincaré.  

 
In order to describe this effect, Poincaré wrote down the equation of motion of an electric charge in a 

coulombian magnetic field created by one end of the magnet. The magnetic field is : 
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H  = g 1
r3

  r
  (3.1) 

 
where g is the magnetic charge, and, from the expression of the Lorentz force, we find the Poincaré 
equation :  

 
d2r
dt2

 = λ 1
r3

 dr
dt

 x r  ;   λ = eg
mc  (3.2) 

 
where e and m are the electric charge and the mass of the electron. 

Poincaré found the following integrals of motion, where A, B, C, Λ, are arbirary constants : 
 

r2 = C t2 + 2B t + A ;  dr
dt

2
= C

 (3.3) 
 
r x dr

dt
 + λ rr  =  Λ

 (3.4) 
 
He obtained from eq. (3.4) :  
 

 Λ . r = λr ;  d
2 r

dt2
 . r = d

2 r
dt2

  . d r
dt

 = 0
 (3.5) 

 
which says that r describes an axially symmetric cone — the Poincaré cone — and that the acceleration is 
perpendicular to its surface, so that  r follows a geodesic line . 

If the cathodic rays are emitted far away from the magnetic pole with a velocity V parallel to the z axis, 
they will have an asymptote which obeys the equations :  

 
x = x0  ; y = y0 (3.6) 
 
And we find from (3.3) and (3.4) : 
 
C = V2 ;  Λ = y0V, − x0V, λ  (3.7) 
 
The z axis is thus a generating line of the Poincaré cone and the half angle Θ' at the vertex is given by : 
 
sin Θ' = V

λ
 x0

2 + y0
2 

 (3.8) 
 
Now, the cathodic ray that becomes, after the emission, a geodesic line rotating along the cone, crosses 

the z axis at distances from the origin given by 
 

 x0
2 + y0

2

sin φ
  ;   x0

2 + y0
2

sin 2φ
  ;   x0

2 + y0
2

sin 3φ
  ;…  φ = 2π sin Θ'

 (3.9) 
 

Therefore, if the emitting cathode is a small disc of radius x0
2 + y0

2
 orthogonal to the z axis, and if the 

position of the magnetic pole is such that one of these points is on the surface of the tube, there will be a 
concentration of the electrons emitted by the periphery of the cathode and even, approximately, of those 
coming from the whole disc : this is the focusing effect observed by Birkeland.  
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This is an important result because, although the existence of magnetic monopoles as particles is not yet 
proved (at least, we are not sure of that), the Poincaré equation (3.2) and the integral of motion (3.4) are 
experimentally verified.  

In eq. (3.4), the first term is clearly the orbital momentum of the electron with respect to the magnetic 
pole. The second term was later interpreted by J.J. Thomson (see [7], [11]) who showed that :  

 

 eg
c  rr = 1

4πc
 x × E × H

—�

�

 d3x
 (3.10)  

 
Thus, with the value of λ given in eq. (3.2), the second term of the Poincaré integral is equal to the 

electromagnetic momentum and eq. (3.4) gives the constant total angular momentum J=mΛ. The presence 
of a non vanishing electromagnetic angular momentum is due to the axial character of the magnetic field 
created by a magnetic pole and acting on the electric charge.  

Let us add a remark about symmetry [12] : the Poincaré cone is enveloped by a vector r which is the 
symmetry axis of the system formed by the electric and the magnetic charge, and this axis rotates (with a 
constant angle Θ') around the constant angular momentum J=mΛ. But this is exactly the definition of the 
Poinsot cone associated to a symmetric top [13].  

The Poincaré cone is nothing but the Poinsot cone of a symmetrical top, which is not surprising because 
the system formed by an electric and a magnetic charge is axisymmetric and is rotating around a fixed 
point with  a constant total angular momentum. Such a system must have the angular properties of a top, 
but with a different radial motion because the it is not rigid (the motion along the geodesic lines of the cone 
has nothing to do with a top). 

 Introducing the following definition with two obvious properties :  
 
L = r × dr

dt
 ;  L . rr  = 0 ;   Λ . rr   = 0

 (3.11) 
 

all that was said can be summarized in the following figure : 
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λ r / r
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Fig. 3 The generation of the Poincaré (or Poinsot) cone  
and the decomposition of the total momentum.  

 
Of course, all these results are true for a magnetic charge in a coulombian electric field : we shall see 

that this will be true in our case and that our equation for a magnetic monopole will give, at the classical 
limit, the Poincaré equation. 

 
4. Forces and potentials for a magnetic pole 

 
Owing to the second formula (2.1), we can write the equation of motion of a monopole in a particular 

system where the external field reduces to its magnetic part : 
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d p0
dt0

 = g H0
 (4.1) 

 
p0, t0 and H0 are the momentum, time and magnetic field in this system. The Lorentz transformation 

of the electromagnetic field is : 
 

E0 = E + v/c H
1− v/c 2

 ;  H0 = H − 1/c v × E

1− v/c 2
 (4.2) 

 
Therefore, the general form of (4.1) reads :  
 
d p
dτ

  = g H − 1/c v × E

1− v/c 2
  

 (4.3) 
 

where dτ =dt 1- v/c 2  is the differential of the proper time so that (4,3) can be writen :       
 
d p
dt

  = g H − 1/c v × E     
 (4.4) 

 
The right-hand side of eq. (4.4) is the Lorentz force acting on a magnetic pole, with a minus sign in 

front of E instead of the plus sign occuring in front of H in the electric case. 
Now, we go back to the Maxwell equations (2.3) with magnetic current and charge densities and 

introduce relativistic coordinates : 
 
xα = x1, x2, x2, x4  = x, y, z, ict  (4.5) 
 
In a covariant form, eq. (2.3) becomes :  
 
ŽβFαβ = 4π

c  Jα ;  Jα = J, iρc

ŽβFαβ = 4π
c  Kα ;  iKα = K, iµc  (4.6) 

 
where the i = √−1 in front of Kα is due to the axial character of K ; we have the relation of duality:  

 

Fαβ = i
2

 εαβγδ Fγδ    (εαβγδ - antisymmetric)
 (4.7) 

 
It is clear that we cannot define the field by a Lorentz polar potential only because :  
 
Fαβ = ŽαAβ − ŽβAα → ŽβFαβ = 0 (4,8) 
 
Then, we must introduce a new potential Bα such that :  
 

Fαβ = ŽαAβ − ŽβAα + ŽαBβ − ŽβBα (4.9) 
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Both right-hand terms in eq. (4.9) must have the same variance. Hence, Bα is a pseudo-potential, i.e. 
the dual of an antisymmetric tensor of rank three : 

 

Bα = Cβγδ = 1
3!

 εαβγδCβγδ

 (4.10) 
 
In terms of ordinary coordinates, we have :  
 
Aα = A, iV  ;    iBα = B, iW    (4.11) 
 
where B is an axial vector. The fields are defined as :  
 

    E = − ∇V − 1c ŽA
Žt

 + curl B 

H = rot A + ∇W + 1c ŽB
Žt  (4.12) 

 
Actually, we shall not consider "dyons" with electric and magnetic charges, but "true" magnetic poles 

with a magnetic charge only, so that formulae (4.9) and (4.12) reduce to : 
 

Fαβ = ŽαBβ − ŽβBα →  E = curl B ; H = ∇W + 1c ŽB
Žt  (4.13) 

 
The last formulae were derived by de Broglie from his theory of light [14] ; they were related to the 

magnetic monopole by Cabibbo and Ferrari [15].    
 

5. Dirac strings 
 
In a celebrated paper of 1931, Dirac raised a fundamental problem about the interaction between 

electric and magnetic charges i. e. either the motion of an electric charge around a fixed monopole or 
conversely the motion of a monopole around a fixed electric charge, [16], [17], [18], [19]. Let us choose, 
as Dirac did, the motion of an electric charge in the magnetic coulombian field H generated by a fixed 
monopole with charge g. H is thus defined by a vector potential A such that: 

 
curl A = g  r

r3  (5.1) 
  
It is clear that there is no continuous and uniform solution A of this differential equation because if we 

consider a surface Σ bounded by a loop Λ, we find according to Stokes' theorem :  
 

H .dS
Σ

 = curl A.dS
Σ

 = A.dl
Λ

 = g  
Σ

r
r3

.dS  = g dΩ
Σ

 
 (5.2) 

 
where dS, dl and dΩ are elements of surface, length and solid angle respectively. Now, if the loop is 
shrinked to a point, while the pole remains inside the closed surface Σ, we get :  
 

A.dl
Λ→0

 = g dΩ =
Σ

 4πg  
 (5.3) 
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This equality is impossible for a continuous potential A because then the first integral vanishes. There 

must be a singular line somewhere around which the loop shrinks. Now, whatever the wave equation, the 
minimal coupling is given by covariant derivatives :  

 
∇ − i e

hc
 A

 (5.4) 
 
Dirac introduced in the wave function ψ a non integrable (non univalent) phase γ, defining a new wave 

function : 
 
Ψ = eiγ ψ (5.5) 
 
If we apply the preceding operator, we know that the introduction of this phase γ  is equivalent to the 

introduction of a new potential by a change of electromagnetic gauge  : 
 
∇ − i e

hc
 A  Ψ = eiγ ∇ + i∇γ − i e

hc
 A  ψ

 (5.6) 
 
We can identify the new potential with the gradient of γ, but the phase factor eiγ is admissible only if 

the variation of γ around a closed loop is equal to a multiple of 2π. Then, we must have : 
 

e
hc

 A.dl
Λ→0

 =  ∇γ.dl
Λ→0

 = ∆γ   loop = 2πn
 (5.7) 

 
Comparing eq. (5.3) and (5.7), we find the famous Dirac condition between electric and magnetic 

charges : 
 
eg
hc

  = n
2  (5.8) 

 
It is interesting to confirm this result on a solution of the eq. (5.1). Dirac chose the following solution :   
 

 Ax = gr  −y
r+z

 ,    Ay = gr  x
r+z

 ,  Az = 0 ,  r = x2+y2+z2     
 (5.9) 

 
In polar coordinates : 
 
x = r sin θ cos ϕ ,  y = r sin θ cos ϕ ,   z = r cos θ  (5.10) 
 

Eq. (5.9) becomes : 
 

 Ax = − gr  tan θ
2

 sin ϕ ,    Ay = gr  tan θ
2

 cos ϕ ,   Az = 0    
 (5.11) 

 
There is a nodal line which goes from x = 0 to ∞, for  θ = π, and the Dirac condition is easily found if 

we compute the curvilinear integral (5.7) around this line for θ = π − ε and  let ε go to 0. We must have : 
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e
hc

 A.dl
Λ→0

 =  eg
hc

 1r  tan θ
2

θ = π − ε , ε→0

  rsin θ dϕ = 2πn
  (5.12)   

 
Therefore : 
 

 eg
hc

sin ε
tan ε

2
ε→0

   dϕ = eg
hc

 2×2π = 2πn

 (5.13) 
 
We see that the factor 2 comes from ε/2 in the tangent and we could conclude that it is related to the 

fact that the nodal line begins at r = 0. But this is wrong because the solution (5.9) or (5.11) chosen by 
Dirac depends on an arbitrary gauge, and his choice is not actually very good because this potential has no 
definite parity. Moreover, it must be stressed that with a polar vector A, the vector curl A is axial, so that 
eq. (5,1) would be admissible only with a pseudo scalar constant  g, against which we have already 
objected. In the following, we shall find a wave equation for a monopole in an electromagnetic field and 
our potential will not be A but B, solution of the following equation, where e is a scalar : 

 
curl B = e  r

r3  (5.14)   
 
We know that B is an axial vector and it is evident on (5.14) because curl B must be polar, like r. 

Mutadis mutandis Dirac's reasoning presented above will be true, but we shall choose another solution of 
(5.14) which is axial : 

 

Bx = er   yz
x2 + y2

 ,  Bx = er   −xz
x2 + y2

 ,   Bz = 0 ,   r = x2+y2+z2

 (5.15)  
 
Or, in polar coordinates : 
 

Bx = er   sin ϕ

tan θ
 ,  By = er   − cos ϕ

tan θ
 ,   Bz = 0

 (5.16)  
 
The Dirac-like solution is, in this case : 
 

 B'x = er   −y
r+z  ,    B'y = er   x

r+z  ,   B'z = 0     (5.17) 
 
And we have the gauge difference :   
 
B' − B = ∇ Arctan yx  (5.18) 
 
Using solution (5.15) or (5.16) in Dirac's proof of relation (5.8), the singular line goes now from − ∞ to 

∞, instead of from 0 to ∞, and equality (5,13) becomes : 
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2× eg
hc

sin ε
tan ε

ε→0

   dϕ = 2×eg
hc

 2π = 2πn
  (5.19) 

 
Now, the factor 2 comes no more as it did above from tan ε/2 but from the fact that the singular line 

pierces the sphere in two points. Therefore, the factor n/2 in the Dirac condition (5,8) was not at all related 
to the fact that the singular line began in r = 0. Further, we shall give another proof of Dirac's relation and 
we shall see that the factor n/2 is related to the double connexity of the rotation group.  

According to (5.8), if we choose the charge e of the electron as a unit electric charge, the magnetic 
charge is quantized. For n=1, we obtain the unit magnetic charge as a function of the electron charge and 
of the fine structure constant : 

 

  g0 = hc
2e2

 e = 1
2α

 e ≅ 137
2

 e = 68,5 e
  (5.20) 

 
This is an enormous charge, of the order of the electric charge of a nucleus in the region of lantanides, 

beyond the middle of Mendeleïev's classification. This means that a monopole interacts strongly with 
atoms and possesses strong ionizing properties. It seems that a light monopole would be continually 
deviated from its inertial trajectory. Actually, the problem of the interaction cross section between electric 
and magnetic particles is difficult and not free from some ambiguities or ad hoc hypotheses which we shall 
not discuss in this paper (see [1], [20], [21], [22], [23], [24]).  

 It is noteworthy, for future questions raised by experiment, that Dirac's condition (5,8) is based on 
general assumptions from quantum mechanics (uniformity of phase), electromagnetism (fields expressed 
by potentials) and on the postulate of gauge invariance1. Until now, there has been unfortunately only one 
observation, by Blas Cabrera, of a possible magnetic monopole, with a magnetic charge obeying the Dirac 
condition : a jump of the quantized magnetic flux of a superconducting loop, corresponding to one Dirac 
unit (5.20) of magnetic charge [25]. But we cannot ignore the fact that a series of experiments was 
performed in the thirties by Ehrenhaft [26], later by Schedling [27] and Ferber [28], and recently by 
Mihaïlov [29], [30], [31], [32], [33]. Thousands of observations of strongly illuminated ferromagnetic 
aerosols in various electric and magnetic fiels, showed a migration of microparticles which could not be 
interpreted, until now, other than as a migration of magnetic monopoles (several other interpretations were 
attempted, but seem to be wrong).  

Nevertheless, these phenomena are not really understood. They give a whole range of values of 
magnetic charge, and most of them violate the Dirac condition. While the unit given by (5,20) is about 
3,28×10-8 gauss cm2, the  measured charge is between 10-13 to 10-11 gauss cm2. Mikhaïlov gave an 
empirical formula that fits many experimental results [31] :  

 
g = α

6
 e  ⇒ g = 1

3
  α2 g0

 (5.21) 
 
α  is the fine structure constant and g0 the Dirac unit charge (5.20).   
In 1948, Dirac [17] quoted two Ehrenhaft's papers [34]. He did not allude directly to the discrepancy 

concerning the charge, but he remarked that the value he had predicted for the smallest magnetic charge led 
him to the conclusion that the creation of a magnetic pole requires an enormous amount of energy in order 
to separate a magnetic doublet2. But Ehrenhaft did not use high energies, so that Dirac simply said : "this is 

                                                 
1It may be noticed that Dirac's result on monopole was perhaps the first one which was based on the 
postulate of gauge invariance. 
2  We shall see later that Dirac's conclusion is not at all obvious because the separation of a doublet is not 
the unique way to produce a monopole. Perhaps it is not the way at all. 
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not a confirmation of the present theory". But, of course, he didn't assert that the experiments were 
impossible for theoretical reasons !     

Einstein was informed of these experiments and of Ehrenhaft's conclusion that, perhaps, even the 
fundamental electric charge is not a universal constant. In 1939, in a letter to Langevin, Einstein made a 
brief but remarkable comment and recommended Ehrenhaft for the next Conseil Solvay (that actually met 
after the war) : 

 
"I know that Ehrenhaft' reputation is bad in the circles of physicists because of his persistency, based 

on numerous researches, to deny the constancy of the elementary quantum of electricity. Nevertheless, it 
must be said in his favour, that he himself has created a large part of the method in question, and that the 
results of his experiments were not weakened by more reliable results of measures performed in this 
domain, but rather by general reflections, based on results obtained in a quite different domain." [35]  

 
A beautiful example of Einstein's open mind and of his humility before experimental physics.  
 

6. A spinor wave equation for a magnetic monopole. 
 
Now, we shall find a wave equation for a magnetic monopole. It will be shown that the famous Dirac 

equation for the electron admits not only one local gauge invariance but two — and only two. As it is 
known, the first invariance (the ordinary phase invariance) corresponds to an electric charge ; the second 
one corresponds to a magnetic monopole. The new spinorial equation so obtained describes, in quantum 
terms, the Curie symmetry laws, and we shall see that new symmetries are involved, that can be given only 
in quantum mechanics, without any classical equivalence : especially the correct definition of an 
antimonopole. 

 
a) Scalar gauge and chiral gauge in the Dirac equation. 
 
Let us write the Dirac equation without external field : 
 
 γµŽµψ + m0c

h
 ψ = 0

  (6.1) 
 

where xµ= {xk ; ict} and γµ are matrices defined in terms of Pauli matrices sk as : 
 

 

 γk = i 0 sk

− sk 0
 ;  k = 1, 2, 3 ;  γ4 = 

I 0

0 −I
 ;  γ5 = γ1γ2γ3γ4 = 0 I

I 0
  

 (6.2) 
 
Consider a global gauge transformation where Γ is a Hermitian matrix and θ a constant phase :  
 
ψ → eiΓθ ψ (6.3) 
 
Eq. (6.1) becomes : 

 
γµ eiΓθγµ  γµψ + m0c

h
 eiΓθ ψ = 0

 (6.4) 
 
 Let us now develope Γ on the following Clifford algebra basis built on the γµ matrices : 

 

Γ = aN ΓN�
N = 1

16
 ;  ΓN = I, γµ,  γ[µγν],  γ[λγµγν],γ5 

 (6.5) 
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Owing to the commutation rules of γµ we have the following relations for any matrix ΓN [36] (the sign 

varies with µ and N) :   
 
 γµ ΓN γµ = ± ΓN  (6.6) 
 
Hence we find from eq. (6.4) : 
 

 γµ eiΓθ γµ = exp iθ ± aN γµ ΓN �
N = 1

16
γµ  = exp iθ ± aN ΓN�

N = 1

16
   

 (6.7) 
 

A necessary condition for the gauge invariance of eq. (6.1) is that the factor γµ eiΓθγµ  in (6.4) does 
not depend on µ and this is possible with two and only two matrices ΓN : I and γ5 because the first 
commutes and the second anticommutes with all the γµ . Therefore :  

 
Γ = a1I + a5 γ5  ;  a1 ,  a5 = Const. (6.8) 
 
The first term gives the ordinary phase invariance that implies the conservation of electricity :  
 
Γ = I ;  ψ → eiθ ψ  (6.9) 
 
For reasons to be explained shortly, the second term will be called the chiral invariance :   
 
Γ = γ5 ;  ψ → eiγ5θ ψ (6.10) 
 
 We shall see that this invariance implies the conservation of magnetism. But these two gauges are quite 

different because the first one is valid for every value of m0 in eq. (6.1), so that the conservation of 
electricity is universal in quantum mechanics, while the second one is valid only for m0 = 0 in (6.1) 
because of the anticommutation of γ5 and γµ, so that the conservation of magnetism is not as strong as the 
conservation of electricity ; it is broken by a linear mass term. Despite this difference, there is a symmetry 
between the two gauges, owing to two kinds of relations.  

At first, let us recall that the Dirac spinor and the Clifford algebra basis (6.5) define 16 tensorial 
quantities : a scalar, a polar vector, an antisymetric tensor of rank two, an antisymmetric tensor of rank 
three (an axial vector) and an antisymmetric tensor of rank four (a pseudo-scalar) :  

 
 Ω1  = ψ ψ ;  Jµ = i ψ γµ ψ ;  Mµν = i ψ γµ γν ψ ;  Σµ = i ψ γµ γ5 ψ ; Ω2  = − i ψ γ5 ψ

ψ = ψ+γ4 ;   ψ+ = hermitean conjugated  
 (6.11) 
 
Secondly, when Ω1 and Ω2  do not simultaneously vanish, the Dirac spinor may be written as follows 

[37], [38], [39] : 
 
ψ = ρ e i γ5 A/2 U ψ0 (6.12) 

 
ψ0 is a constant spinor, U a general Lorentz transformation, A the pseudo-scalar angle of Yvon-

Takabayasi : 
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tan A = Ω2

Ω1  (6.13) 
 

The amplitude ρ is : 
 

ρ = Ω1
2+Ω2

2
 (6.14) 

 
Now, the proper rotation Euler angle ϕ (included in U) defines a scalar phase  ϕ/2 of the spinor 

ψ, which is canonically conjugate (with respect to a classical Poisson bracket) to the fourth component of 
the polar vector Jµ  [37], [38], [39] : 

 
ϕ
2

 ,  J4  = δ r−r'
 (6.15) 

  
In analogy with (6.15), the pseudo-scalar phase A/2 is conjugate to the fourth component of the axial 

vector  Σµ [37], [38], [39] :  
      
A
2

 ,  Σ4  = δ r − r'   
 (6.16) 

 
In Dirac's therory of the electron, J4 is a density of electricity associated with the phase invariance and 

the space part J of Jµ is a density of electric current. In the same way, Σ4 is a density associated to the 
chiral  invariance and the space part Σ of Σµ is a density of current. They will be densities of charge and 
current of magnetism. 

Nevertheless, among the differences between the two gauges, and apart from the fact that  Jµ is polar 
and Σµ axial, there is the important property that Jµ is time-like while Σµ is space-like  because of the 
Darwin - De Broglie equalities : 

 

− JµJµ = ΣµΣµ = Ω1
2+Ω2

2
 (6.17) 

 
The fact that Jµ (interpreted as a current of electricity and probability) is time-like is very important 

because this property is equivalent to the existence of a rest-frame. At first glance, a space-like  magnetic 
current Σµ looks unacceptable but we shall see that it is not so.   

  The fact that A is a pseudo-scalar is easy to prove using the transformations :    
 
P : ψ → γ4ψ ;  T : ψ → γ1γ2γ3ψ ;  C : ψ → γ2ψ*   (6.18) 
 
With the definitions (6.11), this implies : 
 
P :  Ω1→  Ω1 ;  Ω2  →  − Ω2     

T :  Ω1 →  − Ω1 ;  Ω2  →  Ω2    

C :  Ω1 → − Ω1 ;  Ω2  →  − Ω2  (6.19) 
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Then, definition (6.13) shows that A is a relativistic pseudo-invariant1. Now, we can give a more 
geometrical interpretation of the chiral gauge transformation, making use of the equalities : 

 

Ω1 =  ρ cos A ;  Ω2  = ρ sin A ;  ρ = Ω1
2+Ω2

2
 (6.20) 

 
which are P, T and C-invariant provided that we admit the following conditions on A : 

 
P :  A →  − A ;  T :  A →  − A − π ;  C :  A →  A + π  (6.21) 
 
Now, consider a chiral gauge transformation, slightly modified with respect to the eq. (6,10)  :  
 
ψ' = eiΓθ/2 ψ (6.22) 
 
Using definition (6,11) of Ω1 and  Ω2, we get : 
 

Ω1
'

Ω2
'

 = cos θ − sin θ 

sin θ cos θ
 

Ω1

Ω2  (6.23) 
 
The chiral gauge transformation is thus a θ rotation in the plane {Ω1, Ω2} (while the rotation of the 

spinor was θ/2). Making use of (6.13), we verify that θ represents a phase shift of the angle A : 
 
A' =  A + θ  (6.24) 
 
Naturally, θ is a relativistic pseudo-scalar, like A. 
 
b) The wave equation. 
 
We know that, introducing the ordinary local gauge (5.5) in the Dirac equation (6.1), we find the 

minimal electric coupling and the covariant derivatives (5.4) in terms of Lorentz potentials, that give the 
equation of an electric particle in an electromagnetic field. 

Now, consider the Dirac equation with m0 = 0 : 
 
 γµŽµψ = 0  (6.25) 
 

and the chiral gauge (6.10), replacing the abstract pseudo-scalar angle θ with a (pseudo-scalar) 
phase φ with physical coefficients : 
 

ψ → exp i g
hc

 γ5 φ   ψ ;  Bµ → Bµ + i ∂µφ
 (6.26) 

 

                                                 
1 It must be noted that Ω1 and Ω2 are respectively a scalar and a pseudo-scalar, but not in the four-
dimensional space-time, only the three-dimensional space. The sign of  Ω1 remains unchanged by  P, 
while the sign of Ω2 is changed. Conversely, the sign of  Ω1 is changed by T, while the sign of Ω2 
remains unchanged. 

   



 
 
 
 
 Magnetic monopole  15 
 
 
        

g will be a scalar magnetic charge : the pseudo-scalar character of magnetism is related to a pseudo-
scalar magnetic charge operator G which is at the origin of all the differences between the classical and 
the quantum theory of magnetic monopoles :  

 
G = g γ5 (6.27) 
 
As φ is a pseudo-scalar, the electromagnetic potential cannot be the Lorentz polar vector Aµ, but the 

axial potential Bµ, defined by (4.10), (4.11) and which have the variance of ∂µφ. The covariant derivatives 
are now (the absence of i in front of g is due to the axiality of Bµ) : 

 
∇µ = ∂µ −  g

hc
 γ5Bµ

 (6.28) 
 
The equation of the magnetic monopole is thus [39], [40]: 
 
γµ ∂µ −  g

hc
 γ5Bµ  ψ = 0

 (6.29) 
 
The justification of this equation will be given by its symmetry properties and by the motion in a central 

electric field. 
 

7. Symmetries of the wave equation. 
 

a) Gauge invariance.  
 
By definition, eq. (6.29) is invariant with respect to the chiral gauge transformation (6.23). This entails 

the conservation of the axial current that will play the role of a magnetic current :  
  
∂µKµ = 0 ;   Kµ = g Σµ = i g ψ γµ γ5 ψ (7.1) 
 
 It must be noticed that this magnetic current is not parallel to the electric current and that its pseudo-

tensorial variance is in accordance with the Curie laws. The question of its space-like character will 
become clear a little further. The same expression for the magnetic current was previously suggested by 
Salam [41] for reasons of symmetry, but here, it is deduced from a wave equation and a gauge condition. 

 
b) CPT. 
 
It is easy to prove that our wave equation is C, P and T invariant, i.e. invariant under the 

transformations : 
 
P :  xk →  − xk ;  x4  → x4   ;  Bk →  Bk  ;  B4  →  − B4  ;   ψ →  γ4ψ      
T :  xk →  xk ;  x4  → − x4   ;  Bk →  − Bk  ;  B4  →  B4  ;   ψ → γ1γ2γ3ψ

C : g → g ;   ψ → γ2ψ*    ψ* = compl. conj.                                              (7.2) 
 
In this formulae, the most important point is that the charge conjugation does not change the sign of the 

magnetic constant of charge. In the next section, we shall see what exactly charge conjugation means, but 
we can already assert that two conjugated monopoles have the same charge constant and that two 
monopoles with opposite charges are not charge conjugated : changing g in − g in eq. (6.29), we find a 
new equation which is not unitary equivalent to the original one.  
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Therefore, we cannot create or annihilate pairs of monopoles with opposite charges g and − g , in the 
way pairs of electric charges are created or annihilated. The properties of charge conjugation of eq. (6.29) 
show that there is no danger of an infinite polarization of vacuum which could occur from the zero mass of 
our monopole and it shows that one cannot invoke the hypothesis of great masses to explain the rarity of 
monopoles or, at least, the difficulty to observe them. The fact that chiral invariance and conservation of 
magnetism are easily broken shows that, more probably, monopoles are abundant in nature and that the 
difficulty of the isolation of one of them is not a question of energy. 

But what are conjugated monopoles ?  
  

8. Weyl's representation. Two-component theory. 
 
The Weyl representation is the one that diagonalizes γ5 and, thus, the charge operator G. The 

transformation is : 
 

 ψ → U ψ =  
ξ

η
 ;  U = U −1 = 1

2
  γ4 +  γ5

 (8.1) 
 

where ξ and η are two-component spinors ; and we have :  
 

U G U −1 = U g γ5 U −1 =  g  γ4 = 
g 0

0 − g  (8.2) 
 
Applying eq. (8.2) to ψ given by (8.1), we see that ξ and η are eigenstates of G, corresponding to the 

eigenvalues g and − g :  
 

U G U −1 
ξ

0
 =  g  

ξ

0
 ;  U G U −1 0

η
 = − g  0

η  (8.3) 
 
Owing to (8.1) and (4.11), the equation (6.29) splits into a pair of uncoupled two component equations 

in ξ and η corresponding to opposite eigenvalues  of the charge operator G [39], [40] :  
 

1
c ∂

∂t
 − s .∇ − i g

hc
 W + s .B  ξ = 0

1
c ∂

∂t
 + s .∇ + i g

hc
 W − s .B  η = 0

 (8.4) 
 
They exchange between themselves by C, P, T transformations : 
  
P :  x →  − x ;  t → t ;  B  →  B ;  W →  − W ;  ξ ↔ η            
T :  x →  x ;  t → − t ;  B  →  − B ;  W →  W  ;  ξ ↔ η           

 C : g → g ;   − i s2 ξ* → η;   i s2 η* → ξ                                    (8.5) 
 
They describe two charge conjugated  particles — a monopole and an antimonopole  — with the same 

charge constant but opposite helicities  and going up and down the time. 
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The charge operator G is thus related to the helicity and our monopole appears as a kind of excited 
neutrino : the system (8.4) reduces to the neutrino two-component equations if g = 0.  

The eq. (8.4) are invariant under the gauge transformation (note the opposite signs of φ for ξ and η) : 
 

ξ → exp i g
hc

 φ   ξ ;  η → exp − i g
hc

 φ   η ;  W → W +  1c  
∂φ

∂t
 ;  B → B − ∇φ

(8.6) 
  

9. Chiral currents. 
 
The gauge law (8.6) entails, respectively, for the two equations (8.4), the conservation of two chiral 

currents :   
   

 1c  
∂ ξ+ξ

∂t
 − ∇ξ+s ξ = 0 ;  1c  

∂η+η

∂t
 + ∇η+s η = 0

 (9.1) 
 
These currents are thus defined as : 
 
Xµ = ξ+ξ,  − ξ+s ξ  ;  Yµ = η+η,  η+s η  (9.2) 
 
Its is easy to prove that they are isotropic : 
 
XµXµ = 0 ;  YµYµ = 0 (9.3) 
 
They exchange between themselves by parity : 
 
P :  x →  − x ;   Xµ ↔ Yµ (9.4) 
 

which justifies their denomination as chiral currents. 
Making use of eq. (8.1), we find the following decomposition of the polar and axial vectors defined in 

(6.11) : 
 
Jµ = Xµ + Yµ ;  Σµ = Xµ − Yµ (9.5) 
 
It seems to be a good idea to consider the chiral isotropic currents Xµ and Yµ as the fundamental 

currents and to define the electric and magnetic currents as their sum and their difference (with suitable 
charge factors). Identities (6.17) are now easily proved because, using (6.11) and (8.1), we find : 

 
Ω1 = ξ+η + η+ξ ;  Ω2 = i ξ+η − η+ξ  ;  ρ2 = 4 ξ+η  η+ξ  (9.6) 
 
The fact that one of the currents (Jµ or Σµ) must be time-like and the other one space-like appears as a 

trivial property of the difference and the sum of two isotropic vectors. The space-like vector is Jµ because 
one can show that Xµ Yµ < 0. 

We understand that our magnetic current Kµ = gΣµ may be space-like because the true magnetic 
currents are the conservative chiral currents gXµ and −gYµ whereas Kµ is only their sum.  
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It is interesting to add a remark concerning the role of the chiral currents in the Dirac theory for the 
electron. In the Dirac equation, (9.1) cannot hold because we have no chiral invariance and we find instead 
the equalities : 

 

 1c  
∂ ξ+ξ

∂t
 − ∇ξ+s ξ =  m0c

h
 Ω2 ;   1c  

∂η+η

∂t
 + ∇η+s η = − m0c

h
 Ω2

 (9.7) 
 
The second invariant Ω2 appears as a source of magnetism in the Dirac eqation. The sum and the 

difference of these equations give the conservation of electricity and the Uhlenbeck and Laporte relation : 
 
  ∂µ Jµ = 0 ;  ∂µ Σµ + 2 m0c

h
 Ω2 = 0

 (9.8) 
 

10. The geometrical optics approximation and the monopole in an electric central field. 
 

Now we must verify that we find the correct Poincaré equation and the Birkeland effect. Let us 
introduce in the first equation (8.4) the following expression of the spinor ξ  : 

 
ξ = a eiS/h 

 (10.1) 
 

where a is a two-component spinor and S a phase. At zeroth order in h, we have : 
 

1
c 

∂ S

∂ t
 − g W  − ∇ S + gc B  . s  a = 0

 (10.2) 
 
This is an homogeneous system with respect to a. A necessary condition for a non trivial solution is : 
 

1
c2

 ∂ S
∂ t

 − g W
2

 − ∇ S + gc B 2 = 0
 (10.3) 

 
This is nothing but a relativistic Jacobi equation with zero mass and we may define the kinetic energy, 

the impulse and the linear Lagrange momentum : 
 

E  = − 
∂ S
∂ t

 + g W ;  p = ∇ S + gc B ;  P = ∇ S
 (10.4) 

 
The Hamiltonian function will be equal to : 
 

H = c P + gc B 2  − g W    (10.5) 
 

and a classical calculation gives as equation of motion : 
 

dp
dt

 = g ∇W + 
∂B
∂t

  − gc v × curl B
 (10.6) 
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The eq. (4.13) gives the classical form : 
 
d p
dt

  = g H − 1/c v × E     
 (10.7) 

 
But we must not forget that the mass of our particle is equal to zero, so that v is the velocity of light and 

we cannot write :  p = m v. But the equality : p = E/c2 v still holds when the energy E is a constant, 
which will be the case in a coulombian electric field. We then have : 

 
d2r
dt2

 = − λ 1
r3

 dr
dt

 x r  ;   λ = egc
E  (10.8) 

 
This is exactly the Poincaré equation (3.2) with a minus sign because we have chosen the left 

monopole. If we had chosen the right monopole, i. e. the second equation (8.4), we would have found, with 
the same transformation (10.1), the following equation for b :  

 

1
c 

∂ S

∂ t
 + g W  − ∇ S − gc B  . s  b = 0

 (10.9) 
 
This new equation may be deduced from eq. (10.2), by applying the P and T transformations (8.5) but it 

could seem surprising that (10.9) cannot be deduced from the corresponding charge conjugation. The 
reason is that charge conjugation must be applied not to the spinor a in the eq. (10.2) but to the spinor ξ in 
(10.1), which gives : 

 
g → g ;   − i s2 a* → b ;   i s2 b* → a ;  S  → − S   (10.10) 
 
These equalities show, contrary to what a superficial comparison between (10.2) and (10.9) may 

suggest, that the latter is not deduced from the former by changing the sign of the magnetic charge but by 
changing the sign of the phase of the wave, with the same magnetic charge. Of course (10.9) gives the 
Poincaré equation (10.8) with a plus sign before λ.       

 
11. The quantum description of a monopole in an electric central field. Angular eigenfunctions. 
Dirac's condition. 

 
To solve the problem of a central field, we must introduce W = 0 and the expressions (5.15) or (5.16) of 

B in the chiral equations (8.4). First of all, a quite simple calculation gives the following integrals of 
motion, respectively for the monopole and the antimonopole or, equivalently for the left and the right 
monopole :  

 

 Jξ = h r ×  − i ∇ + DB  + D r + 1
2

 s     

Jη = h r ×  − i ∇ − DB  − D r + 1
2

 s      
 (11.1) 

 
with the notations : 

 
D = eg

hc
  ;  B = e B  ;  r = rr  (11.2) 
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D is the Dirac number that already appeared in the Dirac condition (5.8). Jξ and Jη only differ by the 

sign of D (i.e. by the sign of the eigenvalues of the charge operator). We shall restrict our study to the plus 
sign, that corresponds to the first equation (8.4) (the left monopole), and we shall drop the ξ index. It is 
easily shown that the components of J obey the relations of an angular momentum : 

 
J2 , J3  = ih J1  ; J3 , J1  = ih J2  ;  J1 , J2  = ih J3 (11.3) 

 
Now, if we write J as : 
 
J = h  Λ+ 1

2
 s   ;  Λ =  r ×  − i ∇ + DB  +D r

 (11.4) 
 

we recognize that hΛ is the quantum form of the Poincaré integral (3.4). J is the sum of this integral and 
of the spin operator : J is the total quantum angular momentum of the monopole in an electric coulombian 
field, the exact analogue of the corresponding classical quantity. Of course, the components of hΛ obey 
the same relations (11.3) as the components of J.  

In terms of polar angles, we find, from the definition (11.4) of Λ and the polar form (5.16) of B : 
 

Λ+ = Λ1 + i Λ2 = eiϕ i cot θ 
∂

∂ϕ
 + 

∂

∂θ
 + D

sin θ
        

Λ− = Λ1 − i Λ2 = e− iϕ i cot θ 
∂

∂ϕ
  −  

∂

∂θ
 + D

sin θ
     

Λ3 = − i ∂

∂ϕ
                                                                   

 (11.5) 
 
It is interesting to note that, owing to our choice (5.15) for the electromagnetic gauge, there is no 

additional term in Λ3 as it occurred with the Dirac solution (see for instance [42], [43]). 

Now, we need the eigenstates Z(θ,ϕ) of Λ2 and Λ3, knowing from (11.3), that the eigenvalue equations 
are : 

 

 
Λ

2
 Z = j j + 1  Z  ;  Λ3 Z =  m Z  ;  j = 0,  1

2
, 1, 3

2
, 3,… ;  m = − j, − j + 1, … j − 1, 

 
 (11.6) 
 
In order to simplify the calculation of the functions Z(θ,ϕ), we shall introduce a new angle χ, the 

meaning of which will soon appear, and we consider the product : 
 
D  θ,ϕ,χ  = eiDχ Z θ,ϕ  (11.7) 
 
These functions are eigenstates of operators Rκ that are easily derived from (11.5) :  
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R+ = R1 + i R2 = eiϕ i cot θ 
∂

∂ϕ
 + 

∂

∂θ
  −  i

sin θ
 ∂

∂χ
       

R− = R1 − i R2 = e− iϕ i cot θ 
∂

∂ϕ
  − 

∂

∂θ
  − i

sin θ
 ∂

∂χ
     

R3 = − i ∂

∂ϕ
                                                                       

 (11.8) 
 
Obviously, the eigenvalues are the same as those of Z : 
 
R2 D = j j + 1  D  ;  R3D =  m D (11.9) 
 
The Rk are well-known : they are the infinitesimal operators of the rotation group written in the fixed 

referential. θ, ϕ, χ are the nutation, the precession and the proper rotation. The role of the rotation group is 
not surprising because of the spherical symmetry of the system constituted by a monopole in a central 
electric field.  

Our eigenfunction problem is thus trivialy solved : instead of the cumbersome calculations of 
"monopole harmonics", we see, under the simple assumption of continuity of the wave functions on the 
rotation group, that the angular functions are the generalized spherical functions, i.e. the matrix elements 
of the irreducible unitary representations of the rotation group [39], [40], [44], [45]. These functions are 
also the eigenfunctions of the spherical top. This coincidence was quoted by Tamm [46] without 
explanation, but here, the explanation is evident because we already know the analogy between a 
symmetrical top and a monopole in a central field. 

The eigenstates of R2 and R3  are (see any textbook on group theory) : 
 
Dj

m',m θ,ϕ,χ  = ei mϕ + m'χ   dj
m',m θ  (11.10) 

 

dj
m',m θ  = N 1 — u  − m − m'  / 2 1 − u  − m − m'  / 2 1 + u  − m + m'  / 2 

× d
du

 j − m 1 − u   j − m'  / 2 1 + u   j + m'  / 2
 (11.11) 

 

u = cos θ  ;  N = − 1  j − m i  m − m'

2j  (11.12) 
 
j = 0,  1

2
, 1, 3

2
, 3,… ;  m, m' = −j, −j + 1, … j−1

 (11.13) 
 
The normalization factor N is taken from group theory : the representation matrix is unitary and normed 

to unity. If we want normed eigenfunctions and real d(θ) functions in (11.11), we must take as "monopole 
harmonics" (eigenfunctions of Λ) : 

 
Zj

m',m θ,ϕ  = 2j + 1  D j
m',m θ,ϕ,0   i  m' — m

  (11.14) 
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The proper rotation angle χ disappears because the monopole was implicitly supposed to be punctual, 
contrary to the symmetric top that has a spatial extension. Nevertheless, there is a projection, different from 
zero, of the orbital angular momentum on the symmetry axis, due to the chirality of the magnetic charge. 
The eigenvalue associated to this projection is the quantum number  m'.  

This is a crucial point. If we compare (11.7) and (11.10), we see that the quantum number m' is nothing 
but the Dirac number D. This means that the continuity of the wave function on the rotation group implies 
the quantization of the Dirac number D : 

 
D = m'  (11.15) 
 
But, in virtue of the relations (11.13), we have : 
 
m' = 0,  1

2
, 1, 3

2
, 3,… = n

2  (11.16) 
 
Taking into account the definition (11.2) of D, the equality (11.15) is thus identical to the Dirac 

condition (5.8) and the latter appears as a consequence of the spherical symmetry of the system and of the 
continuity on the rotation group. As we have already announced it, the factor "one half" has nothing to do 
with strings beginning at the origin of electric charge : it is a consequence of the double connexity of the 
rotation group. Let us quote, concerning these questions, an interesting work of T.W. Barrett in which the 
role of the rotation group in electromagnetic field theories is extensively developed [47]. 

 
12. Radial functions. 
 
For a monopole, the harmonics with spin are [40] : 
 

Ωj
 m',m +  = 

j + m
2j + 1

     Zj
 m',m − 1

j − m + 1
2j + 1

   Zj
 m',m          

Ωj
 m',m −  = 

j − m + 1
2j + 1

  Zj
 m',m − 1

− j + m
2j + 1

      Zj
 m',m         

 (12.1) 
 
They correspond respectively to the eigenvalues k = j ± 1/2 of the total angular momentum J. For k = j 

− 1/2, we have : 
 

J2 Ωj − 1
m',m

 +  = k k + 1   Ωj − 1
m',m +   ;  J2 Ωj

m',m −  = k k + 1   Ωj
m',m −  (12.2) 

 
The solution of the radial problem consists in introducing the following expansion in the first equation 

(8.4) and to find the radial functions F± (r):  
 

ξ = e− iωt Fj -  1
+  r  Ωj − 1

m',m
 +  + Fj 

− r  Ωj 
m',m −  (12.3) 

 
We shall not give the technical details, that may be found in reference [40], except for two points :  
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1) One needs, for the calculation, the following formulae : 
 

s.r Ωj − 1
 m',m

 +  = cos Θ'  Ωj − 1
 m',m

 +  + sin Θ'  Ωj 
 m',m −       

    
s.r Ωj

 m',m −  = sin Θ'  Ωj − 1
 m',m

 +  − cos Θ'  Ωj 
 m',m −        (12.4) 

 
cos Θ'  = m'

j
 = D

j
  ;  r = rr  (12.5) 

 
It is worth to note that the angle Θ' that appears is these formulae is the half-angle of the Poincaré cone 

Fig. 3, generated by the precession of the symmetry axis around the orbital angular momentum.  
 
2) Denoting F(r) and G(r) as: 
 

F = 
Fj − 1

+

Fj 
−

  ; G = 
Gj − 1

+

Gj 
−

  ;  F = 1
2

 exp i s2 π
4

  − Θ'
2

 G

 (12.6) 
 

the result of the calculation is :  
 

G = ω
c  r  

i J l − 1/2 ω
c  r

J l + 1/2 ω
c  r

  ;  l = j sin Θ' = j2 − m'2

 (12.7) 
 
The important point is that ω is not quantized : the monopole in a coulombian electric field is always in 

a ionizing state. This fact, predicted by Dirac, may be guessed for two reasons : 1) Because we know the 
spiraling motion on the cone described in the classical case by Poincaré and we know that our equation has 
the Poincaré equation as a classical limit. 2) The potential B given in (5.15) has an infinite string and thus, 
the wave equation cannot have square integrable solutions. 

The function (12.7) are also the massless limit of the solutions of the problem of an electrically charged 
fermion in the field of an infinitely massive monopole [23], which is obvious for formal symmetry reasons. 
But it must be stressed that the essential difference between our theory and all the others is the presence of 
the charge operator G = g γ5 that modifies the chiral properties of the monopole and the question of 
charge conjugation. 

 
13. A massive monopole. 
 
Until now, our monopole was massless, which is not surprising in a gauge theory, but our equation 

(6.28) is unique only under the assumption of linearity. There are other possible equations that are chiral 
gauge invariant but they are non linear. A chiral invariant term must be independent from the angle A and 
it may be proved [39], [40] that the most general form is a function of ρ (defined by (6.14)). Thus we have 
the following lagrangian (where M is an arbitrary function) : 

 

L = 1
2

 ψ γµ ∂µ  ψ − g
hc

 ψ γµ γ5 Bµ ψ + 1
4

 
M ρ2  c

h
 ψ  (13.1) 

 
from which we find a general equation with a non linear term of mass depending on an arbitrary function 
m  (the derivative of M ) : 
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γµ ∂µ − g
hc

  γ5 Bµ  ψ +  1
2

 
m ρ2  c

h
  Ω1 − i Ω2 γ5  ψ = 0

 (13.2) 
  
By definition, this equation is chiral invariant and the magnetic current given in (7.1) is conserved. 

Applying (7.2), one can see that the equation is P — invariant but not by C or T, only by CT, the so called 
"weak time reversal" : 

 
CT :  xk →  xk ;  x4  → − x4   ;  Bk →  − Bk  ;  B4  →  B4  ;  g → g ;   ψ → γ3γ1ψ*

 
 
 (13.3) 
 
In the Weyl representation (8.1), eq. (13.2) is equivalent to the system :  
 

1
c ∂ξ

∂t
  −  s .∇ξ − i g

hc
 W + s .B  ξ + i m 4 ξ+η 2  c

h
  η+ξ  η = 0

1
c ∂η

∂t
  + s .∇η + i g

hc
 W − s .B  η + i m 4 ξ+η 2  c

h
  ξ+η  ξ = 0

 (13.4) 
 
In virtue of (8.5), this system is P and CT — invariant : 
 
CT :  x →  x ;  t → − t ;  B  →  − B ;  W →  W  ;  g → g ;           

  − i s2 ξ* → η;   i s2 η* → ξ                                             (13.5) 
 
In general, eqs. (13.4) are coupled, contrary to (8.4). The non linear mass term introduces a coupling, 

but not very strong. The isotropic chiral currents (see (9.1), (9.2)) are still separately conserved and the 
coupling vanishes when : 

 
ρ = 2 ξ+η  = 0 (13.6) 
 
This obviously happens when ξ = 0 or η = 0, which corresponds to one of the chiral components of the 

linear monopole, but it also happens in a more interesting case : 
 
ξ = f x,t  s2 η*   ⇒  ξ = ei θ x , t  s2 η* (13.7) 
 

where f (x,t) is an arbitrary function that may be reduced to a phase term exp i θ (x,t) under the 
assumption that both components ξ and η are separately normalized.  

Up to the θ phase factor, the condition (13.7) is a generalization of the Majorana condition and it was 
shown that, under this condition, there are monopole solutions that split into two components, even in the 
Dirac equation with a linear term of mass, where m0 is the ordinary rest mass [48] :    
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1
c ∂ξ

∂t
  −  s .∇ξ − i g

hc
 W + s .B  ξ + i m 0 c

h
  ei θ s2 ξ* = 0

1
c ∂η

∂t
  + s .∇η + i g

hc
 W − s .B  η + i m 0 c

h
  ei θ s2 η* = 0

 (13.8) 
 
We shall not develope this question and we go back to the problem with m0 = 0. Suppose that, in 

(13.7), θ = 0 : this means that chiral components are charge conjugated, they constitute a pair monopole — 
anti-monopole ; the definition (9.2) shows that the chiral currents are thus equal : 

 
Xµ = Yµ (13.9) 
 
There is no more chirality and, from (9.5), we have : 
 
Jµ = 2 Xµ  ;  Kµ = 0  (13.10) 
 
In other words : 1) The electric current becomes isotropic, but this is not interesting for us, because we 

have supposed that the particle has no electric charge ; 2) More interesting is the fact that the magnetic 
current vanishes for a pair of charge conjugated monopoles, although their charges are not of opposite 
sign.  

If we were living in an aether made of such pairs of monopoles, it would be very difficult to observe 
them, which means that perhaps the apparent rarity of monopoles is not due to a true rarity, but to the 
difficulty of observing only one of them. It must not be forgotten that we are living in a world full of 
electrons and that it is not so easy to "see" one of them ! 

 
14. The presence of tachyons in the non linear monopole equation. 
 
It is easy to see that the phases of ξ and η are independent in eq. (13.4). We can introduce two plane 

waves with constant spinors a and b and two different phases : 
 
ξ = a e i ω t −  k .r   ;  η = b e i ω' t −  k '.r

 (14.1) 
 

in the equations without external field. We find : 
 

ω
c  + s .k  a + m a+b  c

h
 b+a  b = 0

ω'
c  − s .k'  b + m a+b  c

h
 a+b  a = 0

 (14.2) 
 
Multiplying the first equation by (ω'/c — s.k') and using the second equation, we find a linear system, 

with respect to the spinor a : 
 

Ω + s.K − M
  2c2

h2
  a = 0

 (14.3) 
 
With : 
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Ω = ω ω'
c2

 − k .k'   ;  K = 1c  ω' k − ω k'  + i k × k'  ;  M  = a+b  × m a+b  
 

  (14.4) 
 
Now, in order to have non trivial solutions of eq. (14.3) we must equal to zero the determinant. This 

gives a dispersion relation [40]:  
 
ω2

c2
 − k2  ω' 2

c2
 − k'2  − 2 ωω'

c2
 − k.k'  M

2c2

h2
  + M

4c4

h4
  = 0

 (14.5) 
 
In virtue of the last eq. (14.4), M depends on a and b, except if the term of mass, in the system (13.4), 

has the particular form :   
 

m ξ+η  = m0

ξ+η
    m0 = Const    ⇒   M  =  m0

 (14.6) 
 
It is interesting that, in this case, eqs. (13.4) are homogeneous in ξ and η, which are normalizable. 

There are reasons to believe that such an equation may have physical interest even for an electrically 
charged particle [49], [50].  

With a general function M, two kinds of waves (14.1) are particularly interesting : 
 
1) ω = ω', k = k' : both monopoles have the same phase and the dispersion relation reduces to : 
 

 
ω2

2
  =  k2 +  

c
M   2c2

h2  (14.7) 
 
This is the ordinary dispersion relation of a massive particle, say a bradyon, adopting the terminology 

of the tachyon theory because our second case is : 
 
2) ω = − ω', k = − k' : the phases are of opposite signs and the dispersion relation becomes : 
 

 
ω2

2
  =  k2 −  

c
M   2c2

h2  (14.8) 
 
This is the dispersion relation of a supraluminal particle, a tachyon, the theory of which was extensively 

developed for many years, in particlular by E. Recami and coworkers [51], [52], [53]. The wave equation 
(13.4) seems to be the first one in which tachyon solutions appear, although it was originally written for 
quite independent reasons. 

This non linear equation was more accurately described in some works in view of finding soliton 
solutions and stability properties [54], [55]. Nevertheless, the following result is unpublished : 

Consider the nonlinear equations (13.4) in the case of a coulombian electric field, that is with a pseudo-
potential (5.15) or (5.16). The equations cannot be separated as were the equations (8.4) and the 2×2 
matrix operators (11.1) cannot represent the total angular momentum. The corresponding operator is the 
4×4 operator : 

 

 
J = h r ×  − i ∇ + γ4 DB  + γ4 D r + 1

2
 S    ;   S  = s 0

0 s
 

 (14.9) 
 

that combines the preceding 2×2 operators. J commutes with the Hamiltonian of the whole linear system 
(8.4) ; it is an integral of motion. But it would be meaningless to look for a "commutation with the 
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nonlinear Hamiltonian" of the system (13.4), in order to prove that J is also an integral of the nonlinear 
system.  

We must go back to the definition of an integral of motion in quantum mechanics and directly verify 
that the mean value of the operator J is a constant in virtue of the wave equations (13.4). If ψ is a solution 
of eq. (13.4), we find indeed : 

 

∂

∂t
 ψ+ J ψ dx dy dz = 0  ;  ψ = 

ξ

η  (14.10) 
 

which confirms that the nonlinear system (13.4) has the same constant angular momentum as the linear 
system (8.4). 

 
15. Miscellaneous remarks. 
 
1) A geometric property. When m (ρ2) is constant in eq. (13.2) and (13.4), it was shown (see [12], 

[40]) using an older work of Rodichev [56]), that the presence of a monopole may be considered as a local 
torsion of an affine twisted space, the total curvature of which is : R = Const. × ρ2. Therefore, an aether 
made of pairs of monopoles is a flat space (because in this case, ρ = 0) and the question of the 
observability of monopoles may be expressed in a geometrical form : if such an aether do exist, what must 
be done in order that a local torsion appear ? 

 
2) A possible relation between magnetic monopoles and weak interactions.   
 
We know that the equations (6.28) or (8.4) give the neutrino equations as a particular case, for g = 0, 

and g is quantized by the Dirac condition (5.8) (which is also a consequence of our equations) : 
 

g = n g0  ;  g0 = hc
2e  (15.1)  

 
Therefore, this monopole may be considered as a "magnetically excited" neutrino. More exactly, we 

have a family of monopoles with different values of n and the neutrino is the ground state with n = 0. It is 
thus natural to ask the question : is it possible that such monopoles have not only electromagnetic but weak 
interactions ? And this question leads to another one : is it possible to produce monopoles in weak 
reactions instead of neutrinos ?  If it is so, there must be different families of monopoles associated with 
the different leptons e, µ and τ.  

Finally, this leads to the hypothesis that these monopoles could play a role in the magnetic activity of 
the sun, in particular in the sunspots. Apart from the neutrinos produced by weak interactions responsible 
for the solar energy, massless monopoles could appear and, contrary to the ordinary neutrinos, they would 
undergo an important loss of energy in the condensed matter and it could be a possible explanation for the 
lack of registered solar neutrinos. 

 
3) The Cerenkov radiation of a monopole.   
 
Assuming the above hypothesis holds true, it is interesting to ask the following question : if massless 

monopoles are emitted in condensed matter by a weak reaction or, if some of these hypothetical monopoles 
created in the sun were able to reach the earth, would it be possible to oberve an emission of light ? An 
obvious idea is the Cerenkov radiation. It is not difficult apply the classical theory of Tamm and Franck to 
this problem. We shall not give the calculation, but only the result that seems the most interesting : 

— In the classical Cerenkov radiation emitted by an electric charge, we have in the direction Oz of the 
propagation of the wave : 
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Ez °  0  ;  Hz = 0 (15.2) 
 
— In the case of a magnetic charge, we have on the contrary : 
 
Ez = 0  ;  Hz °  0 (15.3) 
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