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Abstract—A lot of theoretical and experimental studies devoted to the effect of external electromagnetic
fields and ionization on the beta-decay probability have been published in the past years. The possibility of
using this physical effect as the main reactor-regulation mechanism is investigated in this study. A set of
equations allowing the operation of a nuclear reactor to be described when the probability for the beta decay
of precursors of delayed neutrons and, hence, the fraction of delayed neutrons are functions of time is written
and investigated. It is shown that, if the fraction of the delayed neutrons does not change, the proposed set
of equations coincides with the generally known one. As follows from the analysis of the solutions to the
new set of equations, the proposed reactor-regulation method does not allow reactor runaway driven by
prompt neutrons even theoretically. The application of the proposed control method to a circulating-fuel
liquid-type reactor is briefly considered.
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1. INTRODUCTION

It has been recognized in the past years that per-
turbations of atomic electron shells can produce a
substantial effect on periods of nuclear decays occur-
ring because of weak and electromagnetic interac-
tions. By way of example, we indicate that the 163Dy,
193Ir, and 205Tl nuclei, which are absolutely stable in
a neutral atom, become beta-active when the atom is
completely ionized [1] and that a complete ionization
of 187Re increased the beta decay probability by a
factor of 109 (CERN, 1996 [2]). Not only ioniza-
tion but also a superstrong magnetic field applied
to the atom increases beta-decay probabilities [3].
Since the physical mechanism for the production of
delayed neutrons (DNs) from predecessor nuclei is di-
rectly linked to beta-decay processes, the question of
whether it is possible to change the DN fraction was
raised in [4]. Later, it was convincingly proven in [5]
that the fraction of DNs increases when the atom
is ionized or when a superstrong external magnetic
field is applied to the atom [6]. In the latter case, the
fraction of DNs can increase severalfold.
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The production of DNs in the fission of uranium
nuclei was a decisive physical effect that allowed the
development of a nuclear reactor, and it underlies
operation control of all types of reactors. Delayed neu-
trons exert a particularly strong effect on the behavior
of a circulating-fuel reactor [7]. At the present time,
there are no doubts as to whether it is possible to
change the DN fraction through an external action.
Yet, it is assumed in describing nuclear-reactor ki-
netics that the fraction of DNs from each particular
nuclear emitter does not depend on external condi-
tions [8]. This disagreement is due to the fact that the-
oretical foundations of reactor operation were devel-
oped long before obtaining reliable experimental data
indicative of a substantial effect of external physical
factors on probabilities of nuclear processes involving
weak interactions. At present, only the change in
the average DN fraction because of a change in the
chemical composition of the core in the course of
the reactor run is taken into account in describing
reactor kinetics. The objective of the present study is
to analyze qualitatively the question of whether there
are theoretical grounds for employing a method based
on a change in the DN fraction to control a nuclear
reactor.

The equations of classical reactor kinetics [7, 8]
were basically written for an unchanged DN fraction.
Consequently, it would not be correct to analyze these
equations in the case of a changing DN fraction.
In this study, the equations of reactor kinetics are
formulated with allowance for the total number of
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DN emitters (including those nuclei whose decay
did not result in the production of a neutron). These
equations are analyzed in the case of a change in
the DN fraction. It is shown that, if the DN fraction
is changed through an external action (for example,
via the use of a superstrong magnetic field), this may
theoretically allow the reactor power to be controlled.

2. KINETICS EQUATIONS
WITH ALLOWANCE FOR A POSSIBLE

CHANGE IN THE FRACTION OF DELAYED
NEUTRONS

The power released in a reactor is proportional to
the neutron density n. It is well known [7, 8] that the
equations of kinetics within a uniform homogeneous
isotropic model can be used to describe qualitatively
the DN effect on reactor dynamics. We will use the
popular approximation of a single effective DN group
for our qualitative analysis of the reactor behavior in
response to variations in the beta-decay constants λ.
The notation used here is as follows: n is the density of
all neutrons in the reactor core; Y is the density of all
DN emitters in the core, including those nuclei whose
decay did not result in the production of a neutron
(this value is considerably different from the emitter
density used in classic equations kinetics, where only
nuclei whose decay lead to the production of a neutron
are taken into account); χ is the prompt-neutron-
multiplication coefficient defined as the ratio of the
production rate for prompt neutrons to the absorption
rate for all neutrons (the ratio of the number of prompt
neutrons produced per unit time in a unit volume
to the number of all absorbed neutrons in the same
volume within the same time); R is the ratio of the
number of product DN emitters to the number of
product prompt neutrons; T is the effective prompt-
neutron-generation lifetime such that, by definition,
nT−1 is the production rate for prompt neutrons (the
number of prompt neutrons produced per unit time
in a unit volume); λn is the decay constant for DN
emitters undergoing beta decay accompanied by neu-
tron production—that is, by definition, λnY is the
DN production rate (the number of DNs produced
per unit time in a unit volume). It is noteworthy that
a small number of DN emitters yield more than one
DN, and we will take this multiplicity into account
in λn. Also, λ is the total decay constant for DN
emitters with allowance for all their decay channels
where an emitter decays to a nucleus that is not a DN
emitter (we ignore beta decays that resulted in the
production of a new DN emitter, assuming that this
nucleus remains one of the nuclei described by the
density Y ). With the above notation, the equations of
balance between the neutrons and the DN emitters

have the form

dn

dt
=

n

T
− 1

χ

n

T
+ λnY,

dY

dt
= R

n

T
− λY. (1)

On the right-hand side of the first equation, the first
term describes the production of prompt neutrons, the
second term describes the absorption of neutrons, and
the third term describes DN production. On the right-
hand side of the second equation, the first term de-
scribes the production of DN emitters and the second
term describes their disappearance.

Let us assume that the reactor core is exposed
to an action that only slightly affects induced-fission
and neutron-absorption processes but increases the
beta-decay probability (for example, ionization [5] or
a strong magnetic field [6]). In this case, only the
coefficients λn and λ change in Eqs. (1), while the
other quantities remain unchanged. The beta decay
of DN-emitter nuclei that lead to the production of a
neutron and which proceed to excited levels of inter-
mediate nuclei are known to have appreciably lower
decay energies than beta decays not accompanied by
the production of a neutron [5, 9]. Consequently, the
relative change in λn (when ionization occurs or a
when one applies a strong external magnetic field) is
appreciably larger than the relative change in λ [3–6].
Suppose that the following change in the beta-decay
probabilities occurs under the action in question:

λ = λ0 + Δλ, λn = λn0 + Δλn.

We then have

Δλn

λn0
>

Δλ

λ0
. (2)

Let us define the DN fraction η as

η = R
λn

λ
. (3)

The change of interest in the beta-decay probabilities
then leads to an increase in the DN fraction, η =
η0 + Δη (η0 is the unperturbed DN fraction),

Δη

η0
=

λ0

λ

(
Δλn

λn0
− Δλ

λ0

)
> 0. (4)

Next, we introduce the reactor reactivity ρ,

ρ =
χ − 1

χ
+ η0. (5)

In terms of the new notation, we find from the set of
Eqs. (1) that

dn

dt
=

ρ − η0

T
n + λnY,

dY

dt
= R

n

T
− λY. (6)

Let us consider the behavior of a reactor that, while
unperturbed, operated in the steady-state mode—
that is, at ρ = 0. We are interested in solutions for the
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initial conditions

Y (0)
R

= n(0)
η0

Rλn0T
=

n(0)
λ0T

. (7)

Let us assume that the changes Δλ and Δλn occur
abruptly and instantaneously (within a time much
shorter than T ) and consider the behavior of the
reactor with new time-independent constants λ =
λ0 + Δλ, λn = λn0 + Δλn, and ρ = 0. Using (6) and
taking into account (4), we obtain the equation

d2n

dt2
+

dn

dt

[η0

T
+ λ

]
− n

λΔη

T
= 0, (8)

which describes the behavior of the reactor driven
from an equilibrium state. If equilibrium was attained
under some effect made on the core (at perturbed
values of λ and η), the departure from this equilibrium
will also take place when the effect is off (perturbation
removed). In general, we can therefore consider both
positive (the effect is on) and negative (the effect is off)
Δλ and Δη in (8).

Equation (8) describes an unstable point of the
saddle type [10]. It is not difficult to find, via an anal-
ysis of eigenvalues of the increment κ, eigensolutions
to the equation from the corresponding characteristic
equation

κ =
1
2

(η0

T
+ λ

)[
±

√
1 + 4

λTΔη

(η0 + λT )2
− 1

]
. (9)

In the approximation of λT � η0, we obtain

κ+ = λ
Δη

η0
, κ− = −η0

T
. (10)

The solution in (10) is valid at both small, Δη � η0,
and large, Δη > η0, perturbations.

When the effect under consideration (Δη > 0) is
switched on, the neutron density n will increase with
increasing increment κ+ (10), while, when the effect
is switched off, n will stop increasing. Since the power
released in the reactor is proportional to the neutron
density n [7, 8], we can therefore vary the reactor
power by applying external fields to the core. Let us
compare this regulation method with the classical
one.

3. CLASSIC EQUATIONS OF KINETICS

In order to go over to equations of classic kinetics,
we define the quantity C used in [7, 8], which is the
density of DN-emitter nuclei that decayed via the
neutron-production channel,

C =
λn

λ
Y =

βY

R
, β = η. (11)

In the classic formulation of the problem, λn and λ
and, hence, β are constants: only in this case does

the substitution of (11) into (6) lead to the known
equations [7, 8]

dn

dt
=

ρ − β

T
n + λC,

dY

dt
=

βn

T
− λC. (12)

It is obvious that, if β is not a constant, the second
equation in (12) will be different:

dC

dt
=

βn

T
− λC + C

d ln β

dt
.

Thus, the set of Eqs. (6) is more general than that
in (12) because the latter is only valid at constant λn,
λ, and β. At a constant reactivity ρ, we find from (12)
that

d2n

dt2
+

dn

dt

[
β − ρ

T
+ λ

]
− n

λρ

T
= 0. (13)

Analyzing eigenvalues of the increment κ, one can
easily find eigensolutions to the above equation from
the corresponding characteristic equation

κ =
1
2

(
β − ρ

T
+ λ

)
(14)

×
[
±

√
1 + 4

λTρ

(β + λT − ρ)2
− 1

]
.

We find that, for ρ � β and λT � β,

κ+ =
λρ

β
, κ− = −β

T
(15)

and that, for ρ ∼ β � λT ,

κ+ =
λρ

β − ρ
, κ− =

ρ − β

T
. (16)

Equation (13) is similar to Eq. (8) and coincides
with it in the first order at small perturbations, Δη �
η0, if we set

ρ = Δη.

However, these equations are qualitatively different
at large perturbations, Δη ∼ η0. Note that Eqs. (8)
and (13) are applicable when Δη > η0 and ρ > β,
respectively, and we know that, in a superstrong mag-
netic field the DN fraction may become several times
larger [6].

In the classic case (13), the signs of the roots
κ± (16) are reversed if the reactivity becomes larger
than the DN fraction, ρ > β, and it is the large in-
crement ∝T−1 that becomes positive—that is, the
reactor runaway driven by prompt neutrons will be-
gin, making the reactor uncontrollable. In our case
of (8), the inequality λ > 0 always holds and the sign
of the root κ− ∝ T−1 (9) can never change (10).
Consequently, the reactor runaway driven by prompt
neutrons (with a large increment ∝T−1) will never
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occur if one employs the proposed new regulation
method, and the reactor power will always increase
with an increment proportional to λ—that is, in in-
verse proportion to the lifetime of DN-emitter nuclei.

4. KINETICS OF A CIRCULATING-FUEL
REACTOR

Since the problem of kinetics for a circulating-fuel
reactor is rather difficult [7], we will consider general
qualitative aspects of its model formulation in order
to clarify the effect to be produced by a changing
DN fraction. We assume that fuel circulates along a
closed loop with quite a large length L and a constant
cross section. Let the x coordinate be along the di-
rection of fuel motion. In our calculations, the core
is assumed to be a regular cylinder and the closure
is taken into account via boundary conditions that
coincide at x = 0 and x = L. We assume that the
reactor has a small constant negative reactivity ρ =
−ρ0 < 0 (ρ0 � η0) over its entire length and that the
fuel moves at a velocity V . Also, we assume that the
core is affected by some action (for example, ioniza-
tion) over the cross section x = 0, with the result that
the beta-decay constants for the DN-emitter nuclei
and the DN fraction increase in accordance with (4).
Since the relative change in λ is appreciably smaller
than the relative change in λn (2), we ignore the
change in λ in this model.

We denote by Δλn0 the change in the decay con-
stant λn for one DN-emitter nucleus, assuming that
it occurs discretely when the atom is excited (for
example, when it undergoes a complete ionization if
we deal with ionization); we also assume that Δλn0 is
identical for all atoms. Let a be the length of the action
area such that a � L, and let I be the fraction of the
atoms affected by this action within a unit time. The
fraction of affected DN-emitter atoms (the ratio of
the number of excited atoms and the total number of
atoms) at the exit from the action area in the reference
frame comoving with the fuel will then be aIV −1 < 1.
We assume that the number of excited atoms in this
reference frame decreases according to an exponential
law with a characteristic decrement ν (for example,
because of recombination if we deal with ionization).
In the problem formulated in this way, the dependence
of volume-averaged λn(x) has the form

λn(x) ≡ λn0 + Δλn(x) (17)

= λn0 + δλn exp
(
−νx

V

)
, δλn = Δλn0

aI

V
,

where λn0 is the unexcited value.

To find dominant qualitative effects, we will con-
sider one group of DNs, integrate the kinetic equa-
tions [7] over the reactor cross section, and write

the resulting equations for the neutron density per
meter, np, and the DN-emitter density per meter,
Yp. We will assume that the external action does not
change radial eigenfunctions for the equation. Under
the above assumptions, a procedure similar to that
used to derive Eqs. 6 yields

∂np

∂t
− V

∂np

∂x
= −ρ0 + η0

T
np + λn(x)Yp, (18)

∂Yp

∂t
− V

∂Yp

∂x
= R

np

T
− λYp.

In this set of equations, the variables are separated,
and the required solutions are found in the form

np(x, t) = z(x) exp(Ωt), Yp(x, t) = y(x) exp(Ωt).

Considering that λn0 = η0λ and λT � η0, we obtain

d2z

dx2
− dz

dx

(
ρ0 + η0

V T
+

λ′
n

λn
+ 2

Ω
V

)
(19)

+ z

(
ρ0λ − Δλn(x)

V 2T
+ F

)
= 0,

F =
ρ0 + η0 + ΩT

V T

(
λ′

n

λn
+

Ω
V

)
+

Ωλ

V 2
,

where the prime designates a derivative with respect
to x. By way of example, we consider the case of small
perturbations with a long relaxation time, such that
ν � λ; consequently,

λ′
n

λn
<

ν

V
� λT

V T
� η0

V T
, (20)

η0
λ′

n

λn
< η0ν

Δλn

V λn
∼ ν

λ

Δλn

V
� Δλn

V
.

In this approximation, we obtain the following equa-
tion from (19):

V 2T
d2z

dx2
− V η0

dz

dx
(21)

+
[
ρ0λ + η0Ω − δλn exp

(
−νx

V

)]
z = 0.

This equation has an analytic solution expressed in
terms of Bessel functions. The boundary conditions
z(0) = z(L) and z′(0) = z′(L) lead to equations for
the parameters, and we solve them for Ω.

From the solutions to the equations, we infer that
the reactor is capable of operating at the higher-than-
critical intensity of the applied action,

I0 =
2
3

ρ0λLν

Δλn0a
. (22)

PHYSICS OF ATOMIC NUCLEI Vol. 73 No. 1 2010



CONSIDERATION OF THE THEORETICAL POSSIBILITY 63

Otherwise the chain reaction is not started. If the ve-
locity is as high as the first or second critical velocity,

V± =
Lν

3
I

I0

(
1 ±

√
1 − I0

I

)
, (23)

the reactor operates in the steady-state mode, Ω = 0.
If V− < V < V+, the reactor power increases, where-
as, for V < V− and V > V+ it decreases with the
increment

Ω =
ρλ

η0

(
2
3

I

I0

Lν

V

[
1 − Lν

6V

]
− 1

)
. (24)

At a small deviation from the first critical velocity,
V = V− + ΔV , the increment of the power change is

Ω = 6
ρλJ(I/I0)

η0Lν
ΔV, (25)

where

J(u) = u
√

1 − u−1
(
1 +

√
1 − u−1

)2
. (26)

Consequently, the proposed reactor-control
scheme allows the reactor power to be regulated
by varying the velocity of fuel motion, ΔV , without
changing the affecting-action intensity I. Note that
the second critical velocity, above which the reactor
power decreases, is an additional security safeguard
in this regulation method.

5. CONCLUSIONS

Thus, we have seen that, if the DN fraction is
varied through the use of an external action (for ex-
ample, via the application of a superstrong magnetic
field), it is theoretically possible to control the reactor
power. A reactor is initially subcritical; its startup and
subsequent operation is due to the application of an
external action to the core. This regulation method
will be much safer than the traditional one because,
even at large perturbations, the reactor will not ex-
perience runaway driven by prompt neutrons and will
retain its “controllability.”
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