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Abstract—Form factors for unique forbidden electron beta decays in a superstrong constant uniform
external magnetic field are considered. The probability of forbidden and allowed electron beta decays
increases in a superstrong magnetic field owing to the increase in the density of vacant electron bound
states at the nucleus involved. It is shown that, because of the growth of the form factors, the relative
increase in the probability of forbidden electron beta decays in a magnetic field exceeds the relative increase
in the probability of allowed decays (at identical decay endpoint energies).
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1. INTRODUCTION

Nuclear processes occurring in the presence of

a superstrong magnetic field, H � α2H0 ∼ 2.35 ×
109 G (where α is the fine-structure constant; H0 =
c3m2

ee
−1

�
−1 ∼ 4.41 × 1013 G; c is the speed of light;

me and e are the electron mass and charge, respec-
tively; and � is the Planck constant), are of interest
in connection with problems that arise in studying
neutron stars and their dynamics [1–5]. A magnetic

field of strength H ∼ α2H0 corresponds to the equal-
ity of the electron Larmor radius to the Bohr radius;
at H ∼ H0, the Larmor radius is on the same order of
magnitude as the electron Compton wavelength. It is
assumed that magnetic fields of neutron stars are as

high as about 1013 G. In [6], Kadomtsev showed that
a superstrong magnetic field changes the structure
of an atom substantially. In response to changes in
the atomic electron shell, the nuclear-decay energy
also changes, which, in turn, leads to a change in
the nuclear-decay probability [7, 8]. The plasma of
a neutron-star atmosphere was studied in [2], where
it was assumed that the atmosphere of a neutron
star and the surface layer of its outer crust (several
hundred meters) have a low density (on the neutron-

star scale) of about 104 g/cm3 and that the surface
plasma is not fully ionized. Therefore, the surface
plasma of a neutron star proves to be in a superstrong
magnetic field, so that decays to bound states and
other processes involving an atomic shell in a su-
perstrong magnetic field, which are considered in the
present study, are of importance here. We note that,
despite its small size, the surface layer determines the
parameters of the radiation escaping from the star.

A relativistic consideration of neutron beta decay
on the basis of the Dirac equation in a superstrong
magnetic field was performed in [9] with allowance
for proton recoil but without allowance for bound
electron–positron states. In [10], neutron decay in a
superstrong magnetic field, H > H0, was considered
by using the Bethe–Salpeter equation to take into
account the bound states in question. In so strong a
field, electrons occupy only the first Landau level of
transverse motion. The opposite case of H < H0 is
of no interest for an analysis of neutron beta decay
(the beta-decay energy is 782.45 keV in this case),
since the probability of neutron decay to a bound

proton–electron state is low (about 3 × 10−6 in an
unperturbed state at H = 0 [11]). This case may be of
interest for beta decays characterized by low endpoint
energies (for example, tritium beta decay, which has
the endpoint energy of 18.61 keV, the probabilities
of decay into a bound state of ions and atoms being
about 1% and 0.6%, respectively), since the probabil-
ity of decay to a bound state increases with increasing
nuclear charge and with decreasing decay endpoint
energy [11, 12]. In [13], positronium bound states in

magnetic fields satisfying the condition H � α2H0

for the ground state of transverse motion were studied
on the basis of the Bethe–Salpeter equation. A more
detailed consideration of positronium in a magnetic
field was performed by Shabad and Usov [14].

In [15], the spectrum of electron bound states in
the Coulomb field of a nucleus in the presence of
an external magnetic field satisfying the condition

H � α2H0 was determined in the nonrelativistic ap-
proximation with the aid of the Schrödinger equation.
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In [16, 17], the Dirac equation was used to study
electron states in the Coulomb field of a nucleus and
an external magnetic field satisfying the condition
H � H0 that are associated with the first Landau
level of transverse motion: the ground state and the
spectrum of excited bound states of longitudinal mo-
tion were considered in [16] and [17], respectively. The
increase in the probability of allowed beta decays of
nuclei with allowance for electron bound states in the
electric field of a nucleus was calculated in [18] on the
basis of the Dirac equation for the case where decay
may occur not only to the first Landau level but also
to higher Landau levels. An increase in the density
of vacant bound states of electrons at a nucleus is
the main reason for the change in this probability.
The results obtained in [18] are applicable under the

condition H0 > H � α2H0, since, for H � H0, it is
necessary to take into account quantum corrections
to the electron mass and magnetic moment [14, 19].

Not only does the density of vacant bound states
increase for forbidden beta decays, but also decay
form factors, which depend on the distributions of lep-
tons, change in this case. The probabilities of unique
forbidden and allowed beta decays to an electron
bound state under conditions of the ionization of an
atom were examined in [20]. In the present study,
form factors for unique forbidden beta decays in a

superstrong magnetic field, H0 > H � (αZ)2H0, are
determined for nuclei of moderately small charge sat-

isfying the condition Z � α−1. Such fields are su-
perstrong on an atomic scale, but they are weak in
relation to nuclear fields. Their effect on beta decay
is indirect: the magnetic field changes bound states
of electrons, and this leads to a change in decay to
a bound state. Concurrently, it is assumed in the
present study that the magnetic field does not change
the nuclear components of decay matrix elements.

Under terrestrial conditions, superstrong pulsed
magnetic fields are attainable in powerful femtosec-
ond lasers [21]. In a pulse of duration in excess of
100 fs, the energy density at the target position may

be as high as 1020 W/cm2. It was experimentally con-
firmed that magnetic fields of strength (0.7 ± 0.1) ×
109 G may be available [22]. Although the time of

their action is short (about 10−13 s), it is sufficient for
the occurrence of atomic processes [23] and for the
observation of changes in isomer half-lives [24].

2. MATRIX ELEMENTS OF FORBIDDEN
BETA DECAYS

We are now going to find out how nonzero ma-
trix elements of forbidden beta decays depend on the
strength of an external magnetic field. In doing this,
we assume that the magnetic field changes only elec-
tron distributions. The total probability of the beta

decay of a nucleus, λ, has the form (here, we make
use of the system of relativistic units, where � = c =
me = 1)

λ =
g2

2π3

∑
l

|M (l)|2, (1)

where g is the weak coupling constant and M(l) is the
matrix element for decay to a specific state of leptons
that is characterized by the set of quantum num-
bers l, the sum being taken over all possible lepton
states. Within the V –A theory of weak interaction,
the general expression for M in the approximation of
independent nucleons has the form of the sum of five
terms; that is, M(l) =

∑
a CaMa(l), where a labels

the scalar (S), vector (V ), tensor (T ), axial-vector
(A), and pseudoscalar (P ) terms; Ca stands for the
corresponding coupling constants [25, 26]; and

Ma (l) =
∫ [∑

i

Ψ̄′Oa,iτiΨ

]
(2)

× [
ψ̄eOa,L

(
1 + γ5

)
ψν

]
d3r + h.c.

Here, Ψ and Ψ′ are, respectively, the initial- and the
final-state nuclear wave function in the form of the
product of spinors of all nucleons; τi is an opera-
tor that transforms the ith neutron of the nucleus
involved into a proton (in the sum, the subscript i
runs through all intranuclear nucleons); ψe and ψν

are spinors that describe the electron and neutrino,

respectively; the overbar on ψ̄ means Dirac conju-

gation; OS = 1, OV = γμ, OT = γμγν , OA = γμγ5,

and OP = γ5, where γ are the Dirac matrices (γ5 =
−iγ0γ1γ2γ3) and μ, ν = 0, 1, 2, 3; and h.c. corre-
sponds to Hermitian conjugation. On the matrices
Oa, the index i means action on the ith nucleon, while
the index L means action on the lepton function. In-
tegration is performed over the volume of the nucleus.

In the following, we describe the nucleus in the
nonrelativistic (Pauli) approximation of independent
nucleons in the reference frame comoving with the
nucleus and disregard the recoil momentum (we place
the coordinate origin at the center of the nucleus).
With allowance for the fact that the Dirac and the
Pauli matrices σj are related by the equation

γj=1,2,3 =

⎛
⎝ 0 σj

−σj 0

⎞
⎠ ,

the matrix elements in question are simplified to be-
come (the pseudoscalar matrix element vanishes in
this approximation)

MS =
∫

�V (r) ψ̄e

(
1 + γ5

)
ψνd

3r, (3)
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MV =
∫

�V (r) ψ̄eγ
0
(
1 + γ5

)
ψνd

3r,

MT =
∫

�Aj (r) ψ̄eγ
0γj

(
1 + γ5

)
ψνd3r,

MA =
∫

�Aj (r) ψ̄eγ
j
(
1 + γ5

)
ψνd3r,

�V (r) =
∑

i

Ψ′+
P τiΨP,

�Aj (r) =
∑

i

Ψ′+
P σj,iτiΨP,

where ΨP and Ψ′
P are, respectively, the initial- and

the final-state nuclear wave function in the Pauli
approximation; Ψ+ is the Hermitian conjugate of Ψ;
summation is performed over dummy indices; and σj,i

acts on the ith nucleon.

The total probability of forbidden beta decay is cal-
culated according to the following scheme: the matrix
elements and the probability of the respective transi-
tion are determined for specific states of the electron
and neutrino, whereupon the resulting probability is
summed over all admissible lepton states with al-
lowance for conservation laws. The main problem in
calculating the probability of forbidden decays is that
the contributions of different orders in the expansion
of the various matrix elements in (3) in r, which
are determined by specific nuclear functions, may be
commensurate in magnitude.

Let us represent the angular dependences of all
functions in the integrands in the matrix elements (3)
for the decay process under study in the form of an
expansion in spherical harmonics [27]

Y m
l (θ, ϕ) (4)

=

√
(l − m)!
(l + m)!

(2l + 1)
4π

Pm
l (cos θ) eimϕ,

where Pm
l (cos θ) are associated Legendre polynomi-

als. It is well known that spherical harmonics satisfy
the relation [27]

Y m1
l1

(θ, ϕ)Y m2
l2

(θ, ϕ) (5)

=
1

2
√

π

l1+l2∑
l=lmin

C̃ l
l1,m1,l2,m2

Y m1+m2
l (θ, ϕ),

where

lmin = max (|l1 − l2| ;m1 + m2) . (6)

The coefficients C̃ l
l1,m1,l2,m2

are expressed in terms of

Clebsch–Gordan coefficients as

C̃ l
l1,m1,l2,m2

(7)

=

√
(2l1 + 1) (2l2 + 1)

(2l + 1)
C l,0

l10,l20
C l,m1+m2

l1m1,l2m2
.

Relevant values of Clebsch–Gordan coefficients are
given in [27].

Transitions for which the nucleus-averaged value
of at least one nuclear function 〈�V 〉 or 〈�Aj〉 is
nonzero—that is, the coefficient of Y0 in the expan-
sion of the function in the spherical harmonics (4)
is nonzero—are allowed beta decays. In such a de-
cay, the parity of the nucleus does not change. If
�V (0) 	= 0, then the spin of the nucleus does not
change either. If �Aj (0) 	= 0 (at some values of j),
the spin of the nucleus changes by unity or remains
unchanged (the 0 → 0 transition is excluded). Since
the characteristic scale of the change in the lepton
functions is large in relation to the nuclear size, the
values of the lepton functions at the center of the nu-
cleus make a dominant contribution to the probability
of allowed beta decays.

For forbidden decays, the nucleus-averaged values
of the nuclear wave functions are zero, 〈�V 〉 = 0 and
〈�Aj〉 = 0, for all values of j. The expansion of the
functions �V (r) and �Aj(r) for forbidden beta decay
in spherical harmonics starts from Yk; in general,
the indices k are different for all functions �. The
smallest of all indices k is referred to as the beta-decay
forbiddenness order. The following rules hold for k
[25, 26] in terms of the change in the nuclear spin,
ΔI, and the change in parity, Δπ = ±1 (in the case of

+1, parity remains unchanged): if Δπ = (−1)ΔI , then

k = ΔI, but if Δπ = (−1)ΔI+1, then k = |ΔI − 1|, in
which case the respective transitions are unique. This
definition of the forbiddenness order covers allowed
transitions (k = 0). For unique transitions, only one
of the tensor (T ) matrix elements in (3) is a leading
one, the contributions of the others being small. Since
spherical harmonics are orthogonal, the expansion of
lepton products in a nonzero matrix element must
also involve spherical harmonics carrying a subscript
larger than or equal to k. Since integration in the
matrix elements in (3) is performed over the volume
of the nucleus, whose size is assumed to be the
smallest parameter in relation to the characteristic
scales of changes in lepton functions, it is sufficient,
for estimating the matrix elements in (3), to determine
the leading term of the expansion of lepton functions
within the nucleus in the radius r.

It is well known (see [28]) that two classes of
solutions to the Dirac equation for a neutrino of mo-
mentum p in the system of spherical coordinates
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(r, ϕ, θ) have the spinor form

ψ
(±)
jm (r, θ, ϕ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

X±
1 Rp,lu (r) Y m−

lu
(θ, ϕ)

∓X∓
2 Rp,lu (r) Y m+

lu
(θ, ϕ)

−iX∓
1 Rp,ld (r) Y m−

ld
(θ, ϕ)

−iX±
2 Rp,ld (r) Y m+

ld
(θ, ϕ)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(8)

where m+ = m, m− = m− 1, lu = j ∓ 1/2, ld = j ±
1/2,

X±
1 =

√
j + 1/2 ± m−

2j + 1 ∓ 1
, X±

2 =

√
j + 1/2 ± m+

2j + 1 ± 1
,

j is the quantum number of the total angular momen-
tum (it is half-integer), m is the magnetic quantum
number (which is integral), two signs refer to two spin
states corresponding to spin directions along (up-
per sign) and against (lower sign) the total angular
momentum, and Rp,l is expressed in terms of Bessel
functions of a half-integer order (l is an integer) as

Rp,l (r) =
√

πp

r
J

l+
1
2

(pr) →
√

2pl+1

(2l + 1)!!
rl (9)

for r → 0.

In terms of cylindrical coordinates (ρ, ϕ, z), solu-
tions to the Dirac equation for an electron of energy
E in a constant external magnetic field of strength
H and a central electric field of the nucleus being
considered can be represented in the form

ψns (t, ρ, ϕ, z) =

√
eH

8π
exp (−iEt) (10)

×

⎛
⎜⎜⎜⎜⎜⎜⎝

√
1 ± E−1

0 J−
n,s,1 (ρ, ϕ, z)

±
√

1 ∓ E−1
0 J+

n,s,2 (ρ, ϕ, z)

i
√

1 ± E−1
0 J−

n,s,2 (ρ, ϕ, z)

±i
√

1 ∓ E−1
0 J+

n,s,1 (ρ, ϕ, z)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where t is time;

J+
n,s,h (ρ, ϕ, z) ≡ In,s(1

2eHρ2)ei(n−s)ϕζh (z) ,

J−
n,s,h (ρ, ϕ, z) = J+

n−1,s,h (ρ, ϕ, z) , h = 1, 2;

In,s are Laguerre functions; ζ1,2(z) are longitudinal-
motion functions, which are expressed in terms of
Whittaker’s functions (the functions ζ1 and ζ2 always
have opposite parities); n is the number of the respec-
tive Landau level; s is the radial quantum number;

and E0 =
√

1 + 2neH . In (10), the transverse (radial)
functions in the first and third spinor components are

coincident, and so are their counterparts in the second
and fourth spinor components. The longitudinal de-
pendences have a different character: it was indicated
in [18] that the longitudinal-motion functions in the
first and fourth components coincide and that the
same is true for their counterparts in the second and
third components. For the first Landau level (n = 0),
the first and third components of the spinor in (10)
vanish. This simplifies the respective set of equations,
which was solved in [17].

Let us go over from cylindrical to spherical coordi-

nates. At small values of the radius, eHρ2 � 1 (this
approximation is legitimate since the nuclear size is
much smaller than the Larmor radius), the first term
of the expansion of the radial part in a power series in
r has the form

J±
n,s,h (r, θ, ϕ) =

1
l±e !

√
ñ±!
s!

(11)

×
(√

1
2
eHr sin θ

)|l±e |
ζh (r cos θ) eil±e ϕ

≈ N±
n,s

(√
ñ±eHr sin θ

)|l±e |
ζh (r cos θ) eil±e ϕ,

where

ñ± = n − 1
2 ± 1

2 , l±e = ñ± − s,

N+
n,s =

1
(n − s)!

√
n!

s! (2n)(n−s)
,

N−
n,s = N+

n−1,s.

In the semiclassical case, we find at small le (n �
le) that the coefficients Nn,s are independent of the
parameters n and H (in order to simplify the presen-
tation, we will henceforth suppress the indices “±,”
unless this leads to confusion); that is,

Nn,s =
1
le!

√
(n − le + 1) (n − le + 2) ...n

(2n)le
∼ 1

le!
√

2le
.

(12)

The characteristic scale of changes in the
longitudinal-motion functions ζ1,2(z) is about the

Bohr radius (αZ)−1 [17, 18], which, in the super-
strong magnetic field being considered, is much
larger than the Larmor radius. It follows that, in (11),
only the leading term of the expansion in z can
be retained for the functions ζ1,2(z). The spatial-
coordinate dependences of the components of the
spinor in (10) are contained in the functions Jn,s,h
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(11), which can be expanded in spherical harmon-
ics (4). For the even function ζh(z), we have

Jn,s,h (r, θ, ϕ) (13)

≈ 1√
π

ANn,s

(√
neH r

)le
∞∑

l′=le

alel′Y
le
l′ (θ, ϕ),

al1l2 =
1
2

√
(l2 − l1)! (2l2 + 1)

(l2 + l1)!

×
π∫

0

sinl1+1 θP l1
l2

(cos θ) dθ,

where A ≡ ζh(0). The amplitude A is determined
by the normalization condition. For bound (in the
longitudinal direction) states characterized by the
longitudinal-motion quantum number κ (where κ is
not an integer), this condition has the form [13, 17,
18]

A ∼
√

αZ

κ
. (14)

For excited levels, κ tends to integral values; for
the ground state of longitudinal motion (minimal κ),
the amplitude and energy depend logarithmically on
H [13–18], since κ0 is a solution to the equation

κ−1
0 = 2 ln

(
κ0

√
eH

2E0αZ

)
. (15)

To a logarithmic accuracy, κ0 can be disregarded
under the logarithm sign. Among the first ten coef-
ficients all′ (l, l′ � 3), the following are nonzero:

a00 = 1, a11 = −
√

2
3
, (16)

a22 = 2

√
2
15

, a33 =
−4√
35

.

The contribution of odd states of longitudinal motion
to the decay matrix elements is small, since, in the
expansion of Jn,s,h in spherical harmonics, the ratio
of the odd-to-even-state factors is equal to the ratio
of the radius of the nucleus to the electron Larmor
radius.

For a transition forbidden in order k, we will inves-
tigate the first nonzero terms in the expansion of the
spatial part of the lepton products in the integrands
on the right-hand sides of (3) in spherical harmonics.
For individual products, we find from (8) and (10) that

ψ(t)∗
e ψ(i)

ν = K(ti)
√

eHplν+1
(√

neH
)le

(17)

× rle+lν Y m
lν (θ, ϕ)

∞∑
l′=le

alel′Y
le
l′ (θ, ϕ) ,

where lν is lu or ld for, respectively, the “upper” or
“lower” components,

K(ti) =
A

2π

√
1 ± E−1

0

N (t)X(i)

(2lν + 1)!!
, (18)

N (1) = N (3) = N−
n,(n−1−l−e ),

N (2) = N (4) = ±N+
n,(n−l+e ),

X(1) = X±
1 , X(2) = ∓X∓

2 ,

X(3) = X∓
1 , X(4) = X±

2 .

In order to calculate, the matrix elements in ques-
tion, it is necessary to know the expansion of the
nuclear part of the matrix elements in spherical har-
monics. For a specific decay, this expansion can be
obtained on the basis of the shell model [25, 29]. For
each product of the form in (17), the leading term is
that which corresponds to the minimum value of de-
grees of the radius r. In turn, this value is always equal
to the sum of the subscript on the neutrino spherical
harmonic and the superscript on the electron spher-
ical harmonic. Employing the multiplication rule for
spherical harmonics in (5) and taking into account
the obvious inequality

lν + le � max (|lν − le| ,m + le)

(which is valid since lν � m and lν + le � |lν − le|),
we find that the leading term in the expansion of the
lepton products has the form

ψ(t)∗
e ψ(i)

ν = aleleC̃
le+lν
le,le,lν ,lν

K(ti)
√

eH (19)

× plν+1
(√

neH
)le

rle+lν Y le+m
le+lν

(θ, ϕ) .

It follows that, for beta decay forbidden in order
k, the selection rules for lepton states in a super-
strong magnetic field are lν + l+e = k or lν + l+e = k +
1, these conditions being formally analogous to the
corresponding rules in the absence of external fields.
However, a substantial distinction is that, for the
electron distribution, le is the quantum number of the
angular-momentum projection onto the magnetic-
field direction rather than the quantum number of the
orbital angular momentum (which is not conserved
under the geometric conditions being considered).

Using relations (19), we can obtain expressions for
all matrix elements of forbidden decays in a super-
strong magnetic field. In general, however, this will
not lead to a specific result without precise knowledge
of nuclear functions: the coefficients in (19) are differ-
ent for different spinor components (t and i); there-
fore, the dependences of the different matrix elements
in (3) on the magnetic-field strength will also be dif-
ferent. Since the different matrix elements in (3) can
make commensurate contributions to the probability
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of a forbidden beta-decay process, the dependence
of the total decay probability on the magnetic-field
strength is determined by the ratio of the moments
of the nuclear parts of the matrix elements. For these
moments, which are individual for each individual
decay [25, 29], we have

MNk =
∫

� (r) rkYk (θ, ϕ) d3r, (20)

where � are the corresponding functions �V or �Aj

(no summation over k is performed here).

3. UNIQUE FORBIDDEN TRANSITIONS

For unique transitions forbidden in order k > 0,
the dominant contribution to the beta-decay proba-
bility comes from only one matrix element—the ten-
sor one in (3), for which the change in the angular
momentum is ΔI = k + 1 [26]. In this case (in just
the same way as in the case of allowed decays), the
nuclear part of the matrix element can be factored
outside the sign of summation over lepton states
in (1) in calculating the total probability. We then have

λ =
g2

2π3
|MNk|2 fk (Z,Q) ,

where MNk (20) is the first nonzero moment of the
nuclear part of the corresponding matrix element
in (3) [25], fk is the integral Fermi function [26], and
Q is the decay endpoint energy. In the unperturbed
case (that is, in the absence of a magnetic field), we
have

fk (Z,Q) (21)

=

Q∫
1

F (Z,E)E
√

E2 − 1 (Q − E)2 Sk (E,Q) dE,

where F is the Fermi function, which takes into ac-
count the distinction between the electron density at
the nucleus and the density of free electrons, and Sk is
the unperturbed form factor for the unique spectrum
of forbiddenness order k [25, 26]. For example, S1 =
p2L0 + 9L1, where the values of L0,1 were tabulated
in [26]. If one disregards the electric field of the nu-

cleus, then S1 ≈ p2 +
(
E2 − 1

)
. The ratio of the in-

tegral Fermi function for unique decay to the Fermi
function for allowed decay having the same endpoint
energy, fk/f0, was also tabulated in [26].

Upon the application of a superstrong magnetic
field, it can be found from (19) with allowance for (12)
and (18) that the quantity obtained by summing, over
all values of le, the probability (1) of decay to a specific
electron state characterized by the transverse-motion

quantum number n and the longitudinal-motion
quantum number κ is given by

λH
nκ = GA2eHp2

k∑
l=0

T k
l (neH)l p2(k−l), (22)

G =
g2

2π3
|MN |2 ,

T k
l =

1
2l

(
allC̃

k
l,l,k−l,k−l

l! (2k − 2l + 1)!!

)2

.

Considering that the sum of the neutrino and electron
energies is equal to the beta-decay endpoint energy
Q, we obtain

λH
nκ = GA2eH (Q − E (n, κ))2 SH

k (E (n, κ) , Q) ,
(23)

where SH
k is the form factor for forbidden decay in a

magnetic field,

SH
k (E,Q) =

k∑
l=0

T k
l (neH)l (Q − E)2(k−l). (24)

For forbidden decays (k = 0, S0 = 1), expression (23)
coincides with that which was obtained previously
in [18]. In the magnetic field being considered, elec-
trons can occupy states of the continuous spectrum,

Ec (n, κ) =
√

1 + 2neH + κ2, (25)

or bound states of the discrete spectrum in the electric
field of a nucleus,

Eb (n, κ) =

√
1 + 2neH

1 + (αZ/κ)2 . (26)

Within the applicability range 1 > eH � (αZ)2, the
following relation holds in (26) for the ground-state
level of longitudinal motion [κ0 in Eq. (15)]:

αZ

κ0
∼

√
eH

(
2αZ√

eH

)
ln

(√
eH

2αZ

)
<

ln x

x
<

1
2
.

Here, x stands for the argument of the logarithm
involved.

In the semiclassical case, we find from (26) for
neH � 1 and εκ < ε0 � 1, where εκ is the binding
energy in the state κ and ε0 is the ground-state bind-
ing energy, a spectrum in the form coincident with its
nonrelativistic counterpart [15]:

Eb (n, κ) = 1 + neH − εκ.

However, expression (26) is also applicable for higher
lying Landau levels, neH > 1. The binding energy in
the ground (κ0) and excited states is

εκ =
1
2

(
αZ

κ

)2

. (27)
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For decays to the continuous spectrum of elec-
trons having a fixed energy E, we find from (23) that

λH
cE = GA2

Nmax∑
n=1

eH (Q − E)2 SH
k (E,Q), (28)

where

Nc max =
(
E2 − 1

)
/2eH (29)

and κ is determined for each value of n from the
condition

κn = ±
√

E2 − 1 − 2neH. (30)

In the semiclassical case, n � 1, we go over from the
sum in (28) to an integral with respect to x = neH .
This yields

λH
cE = GA2 (Q − E)2

k∑
l=0

T k
l (31)

×
(E2−1)/2∫

0

xl (Q − E)2(k−l)dx

= GA2
k∑

l=0

T k
l

(l + 1) 2l+1

× (Q − E)2(k−l)+2 (
E2 − 1

)l+1
.

We can see that the probability of decay to the con-
tinuous spectrum of electrons having a fixed energy
E is independent of the magnetic-field strength and
so is therefore the total probability of decay to the
continuous spectrum. In just the same way as in the
case of allowed decays [18], the reason for this is that,
although the density of states at a specific energy
increases in direct proportion to the field strength H
[see Eq. (10)], the number of possible states decreases
in inverse proportion to H [see Eq. (29)].

4. DECAY TO A BOUND STATE

Let us consider beta decay to bound states formed
in an external magnetic field and the Coulomb field
of a nucleus. A superstrong magnetic field changes
qualitatively the structure of electron bound states in
the nuclear field. For each level of electron transverse
motion (Landau level), there arises the spectrum of
bound states (26), to which beta decay may occur.
These states were absent in the unperturbed case
(without a magnetic field). The quantity obtained by
summing, over all Landau levels, the probability of
decay to a specific state of longitudinal motion is
given by

λH
bκ = G

αZ

κ

N0 max∑
n=1

eH (Q − Eb (n, κ))2 (32)

× SH
k (Eb (n, κ) , Q) ,

Nb max =
Q2 (1 + 2εκ) − 1

2eH
.

For a fixed level of transverse motion, the sum over
all possible Landau levels in (32) is weakly dependent
on the magnetic-field strength, which appears in this
sum only indirectly, through the dependence ε0(H).

Beta decay may occur not only to the ground state
but also to excited states of longitudinal motion. It is
noteworthy that, for a unionized atom in a magnetic
field, the atomic electrons may occupy only the lowest
levels of bound states, the total number of levels of
the ground bound state being quite large, Nb max � 1.
The probability of decay to bound states [see Eq. (32)]
becomes higher with increasing magnetic field for
two reasons: first, the amplitude A (14) grows; sec-
ond, the decay endpoint energy effectively increases(
Q → Q̃

)
—from a comparison of Eqs. (29) and (32),

we obtain

Q̃ = Q
√

1 + 2εκ. (33)

In relation to allowed decays, the probability of for-
bidden decays increases additionally because of the

growth of the form factor SH
k . At low decay energies,

q = Q − 1 � 1, we find from (33) that

q̃ ≡ Q̃ − 1 ≈ q + εκ. (34)

The form factor for decay to the ground bound state is
given by

SH
k (Eb (n, κ0) , Q) ≈

k∑
l=0

T k
l (neH)l (35)

× (Q − 1 − neH + ε0)
2(k−l)

= SH
k (Ec (n, 0) , Q + ε0) .

At low decay endpoint energies, we go over from the
sum in (32) to an integral with respect to x = neH
and ultimately obtain

λH
bκ = G

αZ

κ

k∑
l=0

T k
l l!

(2k − 2l + 2)!
(2k − l + 3)!

q̃2k−l+3. (36)

Since the matrix elements that determine the coeffi-
cient G in (22) are independent of the magnetic field,

the relative increase in the probability
(
λH

b /λ
)
k

for

unique beta decay forbidden in order k is independent
of the nuclear matrix elements. In terms of the relative
increase

(
λH

b /λ
)
0

in the probability of allowed beta

decay, we have

ηk ≡
(

λH
b

λ

)
k

/(
λH

b

λ

)
0

(37)
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=
f0

fk

k∑
l=0

T k
l · 3l! (2k − 2l + 2)!

(2k − l + 3)!
q̃2k−l.

If the decay endpoint energy is much lower than
the energy of the ground bound state of longitudinal
motion, q � ε0 � 1, then the following qualitative
estimate can be obtained from (37) with the aid of the

approximate relation fk/f0 ∝ qk [26]:

ηk ∝
(

ε0

q

)k

∝ (αZ)2k

qk
ln2k

(√
eH

2αZ

)
. (38)

Thus, one can see that, at low endpoint energies, the
form factor for unique forbidden beta decay increases
as Z increases and as q decreases; also, this form fac-
tor grows logarithmically with increasing magnetic-
field strength.

5. CONCLUSIONS

The application of a superstrong external mag-
netic field to an atom leads to an increase in the
probability of forbidden electron beta decays of nu-
clei owing to decay to electron bound states. This
increase is more pronounced than in the case of al-
lowed decays [18], since not only does the density of
vacant electron states at the nucleus involved become
higher, but the decay form factor also increases. By
way of example, we can compare the main chan-

nels of the decays of 134Cs (4+ → 4+ allowed transi-

tion, 658 keV, T1/2 = 2 yr) and 137Cs (7/2+ → 11/2−

unique transition forbidden in the first order, 514 keV,
T1/2 = 30 yr), where the decay endpoint energies are

close. A numerical analysis of formulas (32) and (35)
ultimately reveals that, within the range of applica-
bility of the model being considered, the ratio of the

probabilities for the decay of 137Cs and 134Cs must
increase by a factor of 3.

At low endpoint energies, q < eH , beta decay may
occur only to the first Landau level of transverse
motion. In this case, the probability of allowed beta
decays to a bound state increases in direct proportion
to the nuclear charge Z and in direct proportion to the
magnetic-field strength [10], while, in the absence of
a magnetic field, the probability of decay to a bound

state is proportional to Z3 [11]. The probability of al-
lowed decays ceases to be dependent on the magnetic
field if the decay endpoint energy falls within the range
eH � q � 1.

The dependence of the form factor for forbidden
decays on the nuclear charge and the decay energy
[see Eq. (38)] manifests itself if the decay energy is
much lower than the binding energy for the ground-
state level of longitudinal motion, q � ε0 (ε0 can in
general be about eH). In this case, the form factor

for unique forbidden decay increases as the nuclear
charge increases or as the decay energy decreases;
also, this form factor grows weakly with increasing
magnetic-field strength.
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