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Abstract—The probability of tritium beta decay is shown to decrease under the effect of a constant uniform
external electric field on the atom. For the tritium atom the effect is due first to the reduction of the beta-
decay endpoint energy and second to the reduction of the density of vacant bound electron states at the
nucleus. Both of these factors reduce the the beta-decay probability: the first reduces the probability decay
of to continuum electron states, while the second reduces the probability of decay to a bound state.
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1. INTRODUCTION

At the present time, the helium-isotope mass-
spectrometric method [1, 2] makes it possible to de-
termine the beta-decay constant for tritium (atomic
or ionized) to a precision of about 0.1%. This preci-
sion is sufficient for measuring the difference in the
decay constants for the tritium atom and ion and for
studying the effect of an external electric field on the
beta-decay probability. Changes in the probabilities
of allowed and forbidden β−-decays of fully ionized
atoms in the field of an intense electromagnetic wave
were studied theoretically in [3, 4], where a constant
electric field was considered as a particular case. The
results reported in [3] show that the total probability λ
of beta decay increases in a constant electric field ow-
ing to an increase in the decay endpoint energy. The
effect is proportional to the square of the electric-field
strength (hereafter, we use the system of relativistic
units in which � = c = me = 1, where � is the Planck
constant, c is the speed of light in a vacuum, and me

is the electron mass; the electric-field-strength unit is
E0 = 1.13 × 1017 V/m = 3.77 × 1012 CGS); that is,

∆λ
λ

=
35
64
αE2

Q3
0

≈ 82.8E2, (1)

where Q0 is the beta-decay endpoint energy (for tri-
tium, Q0 = 18.6 keV ≈ 0.0364), E is the electric-
field strength, and α is the fine-structure constant.
In an electric field of strength E ≈ 1012 V/m ≈
4 × 107 CGS ≈ 10−5E0, the estimate in (1) yields
∆λ/λ ≈ 10−8.

*E-mail: filippov-atom@yandex.ru

In [3, 4], the electric field of the nucleus being
considered was disregarded, which entailed the dis-
regard of both beta decay to a bound electron state
and the effect of the atomic shell on the beta-decay
probability. It is well known that the beta decay of a
nucleus in a neutral atom differs from the beta decay
of the respective nucleus in the fully ionized atom [1,
2, 5–12]. Here, we will show that, upon takin into
account the changes in the atomic shell and decay
to a bound state, the result becomes opposite to that
in [3]: an external electric field decreases (rather than
increases, as in [3]) the probability of tritium beta
decay, the effect being six orders of magnitude greater
than the estimate in (1).

From [1, 5], it is well known that, in the beta decay
of atomic tritium, the probability of decay to a bound
electron state is

νa ≡ (
λb

λ
)a = (0.62 ± 0.07)%

and that the analogous result for the free tritium ion
(tritium nucleus deprived of the electron shell) is

νt ≡ (
λb

λ
)t = (1.07 ± 0.04)%.

We will now find how the density of bound atomic
states at the nucleus changes under the effect of an
external electric field.

2. CHANGES IN THE DENSITY OF ATOMIC
ELECTRONS AT THE NUCLEUS

The problem in the nonrelativistic approximation
by means of perturbation theory, retaining terms to
the second order (for all functions, Y = Y (0) + Y (1) +
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1
2Y

(2)). We consider the equation for an electron in
the electric field that is a superposition of the central
Coulomb filed of the nucleus and a constant unform
external electric field of strength E. It is well known
[13–15] that the variables in this equation are sepa-
rated if used is made of the parabolic coordinates

x =
√
ξη cosϕ, y =

√
ξη sinϕ, z =

1
2
(ξ − η),

(2)

r =
√
x2 + y2 + z2 =

1
2
(ξ + η);

the volume element is dV = 1
4(ξ + η)dξdηdϕ. In the

Schrödinger equation

∇2ψ + 2 [W − U(r)]ψ = 0 (3)

for the electron of energy W in the field specified by
the potential energy

U(x, y, z) = −αZ
r

+ E
√
αz (4)

= − 2αZ
ξ + η

+
E
√
α

2
(ξ − η)

represent the electron wave function in the form

ψ(ξ, η, ϕ) =
1√
π
ψ0k

3/2f(kξ)g(kη)eimϕ, (5)

k =
√
−2W,

where the functions f and g are normalized as
∞∫
0

f2(u)du =

∞∫
0

g2(u)du = 1. (6)

From the normalization condition
∫
ψ2dV = 1, we

obtain

ψ0 = F−1/2, (7)

F ≡ 1
2

∞∫
0

uf2(ut)du+
1
2

∞∫
0

ug2(u)du.

Equation (3) reduces to the set of equation

(Ĥ + V̂ )f(u) = Cff(u), (8)

(Ĥ − V̂ )g(u) = Cgg(u)

where the constants on the right-hand sides obey the
condition

Cf + Cg = αZ/k (9)

and where

Ĥ ≡ − d

du
(u

d

du
) +

u

4
+
m2

4u
, (10)

V̂ ≡ E
√
α

4k3
u2.

For a weak external field, we solve the set of Eqs.
(8) by the standard methods of perturbation theory
[13–15], treating W as a fixed parameter. We con-
struct perturbations for the eigenvalues C in (9),
taking V (10) for a small perturbing parameter. The
dependence of the energyW and of the wave number
k on the external-field strengthE is obtained from the
constraint in (9). The calculation of the distribution
function requires taking into account the fact that
perturbation changes not only the wave number k and
the functions f and g but also the factor ψ0, for which
expression (7) is exact. One can readily verify that the
unperturbed (in the absence of the external field E)
solutions to the set of Eqs. (8) have the form [13]:

f (0)
n1

(u) = In1+m,n1(u), (11)

g(0t)
n2

(u) = In2+m,n2(u),

C(0t)
n1,2

= n1,2 +
1
2
(m+ 1),

where n1,2 are the parabolic quantum numbers and

In+m,n(ut) =

√
n!

(n+m)!
e−u/2um/2L(m)

n (u)

are the normalized functions expressed in terms of the

Laguerre polynomials L(m)
n [16] (n in the expressions

for f and g, we will henceforth imply the parameters
n1 and n2, respectively). For the unperturbed state,
the constraint in (9) gives the spectrum

C(0)
n1

+ C(0)
n2

= n1 + n2 +m+ 1 = N, (12)

k(0) = αZ/N, F (0t) = N,

where N is the principal quantum number of the
unperturbed state.

We expand the exact solutions to the perturbed
set of Eqs. (8) in the unperturbed functions In+m,n,
which form an orthonormalized basis for various n
and fixed m. In order to calculate the change in the
probability of allowed beta decay, it is necessary to
determine the change in the nonzero density of elec-
trons at the nucleus. Therefore, we will consider m =
0 states. The first two perturbation orders yield

Cn = (n+
1
2
) + C(1)

n +
1
2
C(2)

n , (13)

C(1)
n = Vnn,

C(2)
n = 2

∑
l �=n

V 2
nl

n− l
,

for f , we have

fn = In,n + f (1)
n + 1

2f
(2)
n , (14)

f t(1)
n =

∑
l �=n

Vnl

n− l
Il,l,
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f (2)
n = 2

∑
l �=n

[∑
s �=n

VsnVsl

(n − s)(n − l)

− VnnVnl

(n− l)2

]
Il,l −

∑
s �=n

V 2
ns

(n− s)2
In,n.

The respective expressions for g are similar. In (13)
and (14), we have introduced the matrix elements

Vnn′ ≡
∫
f (0)∗

n V̂ f
(0)
n′ du = ±U

∫
u2In,nIn′,n′du,

(15)

where the plus and minus signs refer to f and g,
respectively, and

U =
1
4
E
√
α

k3
. (16)

In (15), only the |n′ − n| � 2 terms are nonzero. The
second order of perturbation theory for the function
f in (14) is chosen in such a way as to preserve the
normalization in (6).We calculated perturbations, as-
suming that there is only one perturbation parameter
U (16), whereupon we determined the dependence of
this parameter on the external-electric-field strength
E by using the constraint in (9). In the second order,
it is necessary to consider that U depends on k.

With allowing for known values of integrals in-
volving the functions I [13, 16], we find from (13) that

C(1)
n1

= U [6n1(n1 + 1) + 2] , (17)

C(1)
n1

+ C(1)
n2

= U · 6N(n1 − n2),

C(2)
n1

= −4U2
[
34n3

1 + 51n2
1 + 35n1 + 9

]
.

From the constraint in [9], it can be found that, in the
first order, the dependence of the wave number k onU
and E has the form

k(1)(U) = −αZ
N2

(C(1)
n1

+ C(1)
n2

) (18)

= −6U
αZ

N
(n1 − n2),

k(1)(E) = −3
2
E
√
α

(αZ)2
N2(n1 − n2).

Taking into account relation (6) between U and k, we
obtain

U(E) =
1
4
E
√
α

(αZ)3
N3 +

9
8
E2

α5Z6
N6(n1 − n2).

As a result, we find for k in

k(2)(U) =
2αZ
N3

(C(1)
n1

+ C(1)
n2

)2 (19)

− αZ

N2
(C(2)

n1
+C(2)

n2
) = 2U2αZ

N

× (17N2 + 87(n1 − n2)2 + 19),

k(2)(E) = 2k(1)(U (1)(E)) + k(2)(U (0)(E))

=
1
8
E2N5

α4Z5
(17N2 − 21(n1 − n2)2 + 19).

The coefficients of the second terms in (19) are differ-
ent, as might have been expected for the second order
of perturbation theory because of the dependence ofU
on E and k (16). Taking into account Eq. (5), which
relatesW to the wave number k, we obtain the well-
known spectrum of the Stark effect [13–15]:

W (0) = −1
2
(k(0))2 = −1

2
(
αZ

N
)2, (20)

W (1)(E) = −k(0)k(1) =
3
2
E(n1 − n2)N√

αZ
,

W (2)(E) = −(k(1))2 − k(0)k(2)

= −1
8
E2N4

α3Z4
(17N2 − 3(n1 − n2)2 + 19).

The ratio of the energy perturbation to the energy
of the unperturbed level [13] is a small expansion
parameter here:

W (1)

W (0)
≈ E

√
α(

N

αZ
)3 ≈ E

√
α

k3
= 4U 
 1. (21)

The first two orders of perturbation theory (linear
and quadratic Stark effects) bad to the splitting of
states characterized by a specific value of the principal
quantum number N . In the first order of perturba-
tion theory, the total electron density at the nucleus
remains unchanged. If n1 = n2, the energy (and the
wave number k) in the first order do not change, the
functions f and g are equal in absolute value and are
opposite in sign of the perturbations [see Eqs. (14),
(15)]. Therefore, the product fg and the sum of the
integrals in (7) remain changed, which entails the
invariability of ψ at the point ξ = η = 0 [see Eq. (5)].
If n1 �= n2, the pair of states characterized by the
parabolic quantum numbers (n1, n2) and (n2, n1)
have changes in the density that, in the first order,
are equal in absolute value and opposite in sign so
that the total electron density in the split state charac-
terized by the principal quantum number N remains
unchanged in the first order.

In the second order, the changes in the density
are nonzero. For the sake of brevity, we will use the
notation In,n ≡ I[n]. It follows from (14) that

f (1)
n U−1 =

1
2
n(n− 1)I[n−2] − 4n2I[n−1] (22)

+ 4(n+ 1)2I[n+1] −
1
2
(n+ 2)(n + 1)I[n+2],

f (2)
n U−2 = I[n−4]

1
4
n(n− 1)(n − 2)(n − 3)
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− I[n−3]
4
3
n(n− 1)(n − 2)(3n − 2)

+ I[n−2] · 2n(n− 1)(8n2 − 14n + 3)

+ I[n−1] · 4n(n3 + 33n2 + 3n+ 3)

− I[n]
1
2
(65n4 + 130n3 + 199n2 + 134n + 34)

+ I[n+1] · 4(n+ 1)(n3 − 30n2 − 60n − 32)

+ I[n+2] · 2(n + 1)(n+ 2)(8n2 + 30n + 25)

− I[n+3]
4
3
(n + 1)(n+ 2)(n+ 3)(3n+ 5)

+ I[n+4]
1
4
(n + 1)(n+ 2)(n+ 3)(n+ 4).

The first quantum level 1s (N = 1, n1 = n2 = 0)
has the highest density at the nucleus. For this level,
we obtain the following changes:

f
(1)
0 = −g(1)

0 = U(4I[1] − I[2]), (23)

f
(2)
0 = g

(2)
0

= U2(−17I[0] − 128I[1] + 100I[2] − 40I[3] + 6I[4]),

k(1) = 0, k(2) = 72U2αZ.

The change in the integral in (7) is

F (1) =

∞∫
0

u(f (0)f (1) + g(0)g(1))du = 0, (24)

F (2) = 2U2

∞∫
0

u(I[0](−17I[0] − 128I[1])

+ (4I[1] − I[2])
2)du = 360U2.

It follows from (5) that the decrease in the density of
the electron ground state at the nucleus, ρ1, under the
effect of the external electric field is

∆ρ1

ρ1
=
f (2)

f (0)
+
g(2)

g(0)
+

(
f (1)

f (0)

)2

(25)

+ 4
f (1)

f (0)

g(1)

g(0)
+

(
g(1)

g(0)

)2

+
3
2
k(2)

k(0)
− 1

2
F (2)

F (0)

= −248U2 = −31
2

E2

α5Z6
.

Similar calculations for the changes in the total den-
sity of theN = 2, (n1, n2) = (1,0), (0,1) excited level
yield

f
(1)
1 = −g(1)

1 = U(−4I[0] + 16I[2] − 3I[3]),

f
(2)
1 = g

(2)
1 = U2

(
160I[0] − 281I[1] − 968I[2]

+ 756I[3] − 256I[4] + 30I[5]
)
,

k
(1)
0,1 = −k(1)

1,0 = 3UαZ, k
(2)
0,1 = k

(2)
1,0 = 174U2αZ,

F
(1)
0,1 = −F (1)

1,0 = 24U, F
(2)
0,1 = F

(2)
1,0 = 2760U2,

∆ρ2

ρ2
= −860U2.

Thus, the densities of the ground and excited states of
atomic electrons at the nucleus become lower.

3. CHANGES IN THE PROBABILITY
OF DECAY TO A BOUND STATE

The probability of decay to a bound state is pro-
portional to the electron density at the nucleus (the
density of the state to which decay occurs) and the
square of the decay endpoint energy [6]. The change in
the endpoint energy for decay to a bound state under
the effect of an external electric field is equal to the
difference of the changes in the ionization potentials
of the final and initial atoms (or ions) [11, 12], that is,

∆Q =
(∣∣∣I(E)

He

∣∣∣− ∣∣∣I(0)
He

∣∣∣) − (
∣∣∣I(E)

H

∣∣∣− ∣∣∣I(0)
H

∣∣∣) , (26)

where I(E) and I(0) are the ionization potentials of
, respectively, the perturbed and unperturbed atoms
(or ions) in the external field. In the second order of
perturbation theory, the ionization energy increases in
absolute value, the increase being in inverse propor-
tion to Z4 (20). If the tritium atom decays to a bound
state, a neutral helium atom featuring two electrons
(Z = 2) appears to be:∣∣∣I(E)

He

∣∣∣− ∣∣∣I(0)
He

∣∣∣ =
9
2
E2

α3Z4
=

9
32
E2

α3
, (27)∣∣∣I(E)

H

∣∣∣− ∣∣∣I(0)
H

∣∣∣ =
9
4
E2

α3
.

Therefore, the endpoint energy of tritium-atom decay
to a bound state decreases

∆Qba = −63
32
E2

α3
. (28)

In the decay of the tritium ion, the atomic shell is
absent in the initial state, so that the ionization energy
is zero. Therefore, only the difference of the ionization
potentials of the final hydrogen-like helium ion ap-
pears in (26). The endpoint energy of tritium-ion beta
decay to a bound state increases by

∆Qbt =
∣∣∣I(E)

He+

∣∣∣− ∣∣∣I(0)

He+

∣∣∣ = 9
4
E2

α3Z4
=

9
64
E2

α3
. (29)

The decrease in the probability of tritium-atom decay
to a bound state is(

∆λb

λb

)
a

=
∆ρ
ρ

+ 2
∆Q
Q0

(30)

= − E2

2α5

(
31
Z6

+
63
8
α2

Q0

)
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(for the Z = 2 final nucleus). The contribution of the
second term (which owes its existence to the change
in the energy) is about 2.3%. For the tritium ion, we
have (

∆λb

λb

)
t

=
∆ρ
ρ

+ 2
∆Q
Q0

(31)

= − E2

2α5
(
31
Z6

− 9
16

α2

Q0
) < 0,

the contribution of the second term being ∼ 0.17%.

4. CHANGES IN THE PROBABILITY
OF DECAY TO THE CONTINUOUS

SPECTRUM

The probability of allowed beta decay to elec-
tron states belonging to the continuous spectrum is
determined by the integral Fermi function [17]. A
hydrogen-like helium ion appears to be the final-state
system for tritium-atom decay of to of the continuous
states spectrum. In this case, one can obtain the
change in the decay endpoint energy by means of the
same argument as that used to derive (27) and (29).
The result is

∆Qca =
(∣∣∣I(E)

He+

∣∣∣− ∣∣∣I(0)

He+

∣∣∣)−
(∣∣∣I(E)

H

∣∣∣− ∣∣∣I(0)
H

∣∣∣)
(32)

=
(

9
64

− 9
4

)
E2

α3
= −135

64
E2

α3
.

Since the tritium decay energy is Q0 
 1, we can
estimate the change in the integral Fermi function in
response to the change in the decay endpoint energy
by using the leading term of the expansion [17]; that
is,

S ≡
E0∫
1

E
√
E2 − 1(E0 −E)2dE (33)

=
1
60

√
E2

0 − 1(2E4
0 − 9E2

0 − 8)

+
1
4
E0 ln

(
E0 +

√
E2

0 − 1
)

≈ 16
√

2
105

Q
7/2
0 ,

where E0 = 1 +Q0. For the change in the probability
of tritium-atom decay to electron states of the contin-
uous spectrum, we obtain

∆λc

λc
=

∆S
S

≈ 8
√

2
15

∆Qca

Q0
= −9

√
2

8
E2

α3Q0
. (34)

5. TOTAL DECREASE
IN THE TRITIUM-DECAY PROBABILITY
The total decrease in the probability λ of tritium-

atom beta decay in an external electric field is(
∆λ
λ

)
a

=
(
λb

λ

)
a

(
∆λb

λb

)
a

+
∆λc

λ
(35)

≈ − E2

2α5

[
νa

31
Z6

+
9
√

2
4

α2

Q0

]
≈ −1.85 × 108E2.

In this case, the change in the probability of decay to a
bound state in response to the change in the electron
density at the nucleus (first term) is on the same order
of magnitude as the change in the probability of decay
to continuum states in response to the change in the
ionization energy (second term).

For the tritium ion, we have(
∆λ
λ

)
t

=
(
λb

λ

)
t

(
∆λb

λb

)
t

(36)

≈ −νt
E2

α5

31
2Z6

≈ −1.25 × 108E2,

which exceeds in magnitude the estimate in (1)
from [3] by a factor of 106 and which is opposite
to it in sign. The reason for this distinction is the
following. The decay of a fully ionized atom only
to continuum electron states was considered in [3].
In that case, there is no atomic shell in the initial
and in the final state. Therefore, the decay endpoint
energy of the cannot change became of the changes
in the ionization energy [see Eq. (26)]. For this
channel, the beta decay probability may change only
because of the increase in the endpoint energy under
the effect of an external electric field on the beta
electron. This is precisely the mechanism that was
considered in [3], but its effect is small (10−8) in
relation to the effect of an external electric field on the
change in the density of electron bound states at the
nucleus of the daughter helium ion [see Eq. (25)]. The
analysis in [3] did not include decay to a bound state
(λb), but this channel always exists, its branching
fraction νt not being small (1%). It is precisely the
changes in λb, with allowance for νt, that lead to
the result presented in (36). For tritium-ion decays,
the range of applicability of the estimates obtained
here is determined by the condition in (21) at Z = 2:
E 
 3.7× 10−5E0 ≈ 108 CGS. In the electric field of
strength 1.5 × 107 CGS ≈ 4 × 10−6E0, the relative
decrease in the probability of tritium-ion decay is
0.2%, which is a measurable value [1].
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