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Abstract—The effect of a superstrong constant uniform magnetic field, H � H0 = cm2
ee

3/�
3, on the

probability of allowed electron beta decays is considered. It is shown that, for an atom whose nucleus is
β−-active and which is placed in a superstrong magnetic field, the β−-decay probability increases owing
to the enhancement of β− decay to a bound state of the electron. The effect is operative both for the nucleus
of a fully ionized atom and for the nucleus of a neutral atom.
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INTRODUCTION

Changes in atomic electron states upon placing
an atom in a superstrong constant uniform external
magnetic field were examined in [1–5]. From the
results obtained in [1–5], it follows that this leads
to an increase in the density of electron states and
to a change in the ionization energy of the atom. In
the present study, it will be shown that, for an atom
featuring a β−-active nucleus, this rearrangement of
atomic electron states increases the β−-decay prob-
ability.

The effect of the electromagnetic-wave field on the
probability of the β− decay of a nucleus was studied
in [6–8]. A constant magnetic field was considered
there as a particular case. The conclusion drawn in [6,
7] is that, in an external magnetic field, the total
probability of the β− decay of a nucleus undergoes
no changes, with the exception of the emergence of
a small quantum correction in the case of decay to
the lowest Landau level, this correction leading to a
decrease in the β−-decay probability.

It should be emphasized that, in [6–8], the electric
field of the nucleus being considered was
disregarded—that is, the consideration there was
in fact performed for the decay of the nucleus of a
fully ionized atom without allowance for β− decay to
bound electron states. However, the β− decay of the
nucleus of a fully ionized atom differs from the β−
decay of a neutral atom owing primarily to decay to
a bound state—that is, a decay process where a β−
electron is produced in an unfilled atomic orbit rather
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than being emitted from the atom (see [9, 10] for
the theory of decay to a bound state, [11, 12] for
the theory of the decay of a fully ionized atom, [13]
for experimental data concerning the observation of
β− decay to a bound state of 187Re, and [14] for an
overview of studies devoted to tritium β− decay). In
the case where the initial nucleus undergoing β−
decay is an emitter of delayed neutrons, decay to a
bound state leads to a change in the delayed-neutron
fraction [15].

Thus, it is presently well known that the density
of electron states in the vicinity of a nucleus (and,
hence, the probability of decay to a bound state) de-
pends on an external electromagnetic field, but this
circumstance was disregarded in [6–8]. Moreover,
the ionization energy of a neutral atom (or of a not
fully ionized atom) changes upon placing this atom in
a superstrong magnetic field [4, 5], and this leads to a
change in the β−-decay endpoint energy [16, 17] and,
hence, to a change in the β−-decay probability.

1. ELECTRON BETA DECAY TO A BOUND
STATE

The β−-decay probability λ is the sum of the prob-
abilities of decay to a continuous electron spectrum,
λc, and decay to a bound state, λb [9, 10]. The decay
to a bound state is especially important for decays of
nuclei of fully ionized atoms [11, 12]. For the decay
of a neutral unperturbed atom, the probability λb is
small, since all lower electron orbits are occupied,
while upper ones are characterized by a very low
electron density in the vicinity of nuclei. However, it
will be shown in the present study that, upon placing
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INCREASE IN THE PROBABILITY OF ALLOWED ELECTRON BETA DECAYS 259

an atom in a superstrong magnetic field, the density
of excited atomic electron states in the vicinity of its
nucleus increases, with the result that the probability
of β− decay to a bound state becomes sizable not only
for the β− decay of the nucleus of a fully ionized atom
but also for the decay of the nucleus of a neutral atom.

Unless otherwise stated, we will use below the
system of relativistic units where � = c = me = 1,
with �, c, and me being, respectively, the Planck
constant, the speed of light in a vacuum, and the
electron mass. The probability of electron beta decay
via allowed transitions to a continuous spectrum is
proportional to the integrated Fermi function, which
characterizes the phase space of final states [18].
Specifically, we have

λc =
g2|M |2

2π3
f(Z,U), (1)

f(Z,U ) =

U∫
1

F (Z,E)E
√

E2 − 1(U − E)2dE,

where g is the weak coupling constant; M is the
nuclear matrix element; Z is the charge number of the
nucleus involved; U is the β−-decay endpoint energy;
and F is the ratio of the density of final electron
states in the vicinity of the nucleus with allowance
for external and atomic electromagnetic fields to the
density of states for free particles,

F (Z,E) =
2π2

p2
e

∑
i

ψ+
i ψi. (2)

Here, pe is the momentum of the electron whose total
energy is E, ψi is a spinor that describes an electron
state characterized by the quantum-number set i,
and the plus symbol in the superscript (ψ+

i ) denotes
Hermitian conjugation. The sum in (5) is taken over
all possible states of total energy E.

For allowed β− decays, λc and λb are proportional
to the same nuclear matrix element [9, 10]:

λb(Ej) =
g3|M |2

π

∑
i

ψ+
i ψi(U − Ej)2. (3)

In just the same way as in (2), the sum here is taken
over all bound states of total electron energy Ej . The
total β−-decay probability is

λ = λc +
∑

j

λb(Ej). (4)

In order to calculate the probability of β− decay
to bound states, it is necessary to know the electron
distribution in the central electric field of the nucleus
and a constant uniform magnetic field. In general, the
variables of the problem at hand cannot be separated.

We are interested in the case of superstrong magnetic
fields,

H � H0 =
cm2

ee
3

�3
≈ 2.35 × 109 Oe, (5)

that is, fields in which the Larmor radius of an elec-
tron, rL, is much smaller than the Bohr radius RB,

rL =

√
�c

eH
=

√
cm2

ee
3

�3H

�
2

mee2
(6)

=

√
H0

H

�
2

mee2
� �

2

mee2
= RB,

and in which the cyclotron-rotation energy 1
2�ΩC

is much greater than the ionization potential of the
hydrogen atom,

1
2

�ΩC = �
eH

2mec
� mee

4

2�2
= IH. (7)

In this case, the electric field of the nucleus is a
small correction to the external magnetic field.

2. ELECTRON IN A CENTRAL ELECTRIC
AND A SUPERSTRONG UNIFORM

MAGNETIC FIELD

In the nonrelativistic approximation, the problem
being considered was solved in [1, 2, 5]. Those studies
were devoted to examining the effect of superstrong
magnetic fields on the deformation of atomic electron
shells. The motion of an electron in a superstrong
constant uniform magnetic field and a central elec-
tric field is a superposition of the following two mo-
tions: (i) motion in the plane orthogonal to the mag-
netic field (motion over Landau levels) and (ii) motion
along the magnetic-field direction (one-dimensional
Coulomb motion).

It is noteworthy that bound states of an electron
(along the magnetic-field direction) exist for all Lan-
dau levels, including rather high ones (that is, those
at high energies). This means that, in the case of
superstrong magnetic fields, it is necessary to employ
the relativistic approximation both for a continuous
spectrum and for bound states. In the relativistic
approximation, the problem of a hydrogen-like or-
bit in a superstrong magnetic field was solved by
Krainov [19], who considered the case of stronger
magnetic fields in which the Larmor radius is much
smaller than the electron Compton wavelength.

In the approximation of a superstrong magnetic
field [see Eq. (5)], we will consider the electric field as
a perturbation that affects the motion of an electron
in the magnetic field over the Landau levels. We will
use the well-known solution to the Dirac equation in
a constant uniform magnetic field [20]. We will write
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the Dirac equation in the system of cylindrical coor-
dinates (r, φ, z) for an electron in the electromagnetic
field that is a superposition of the central electrostatic
field of a nucleus characterized by a charge number
Z and positioned at the origin of coordinates and a
constant magnetic field of strength H along the z
axis. We have{

i∂t − α0 +
αZ√

r2 + z2
+ iα3∂z (8)

+ iα1e
±iϕ

[
∂r ± i

r
∂ϕ ∓ γr

]}
ψ = 0,

where γ = eH/(2c�) [the condition in (6) means
that γ � α2], α is the fine-structure constant, ∂µ ≡
∂/∂µ is a partial derivative with respect to the cor-
responding coordinate, the upper (lower) sign in (8)
refers to the action on the first and third (second and
fourth) components of the spinor ψ, and αk stands for
the Dirac α matrices.

We seek solutions to Eq. (8) in the form [20]

ψns =
1√
2π

exp[−iEt + i(n − s)ϕ]
√

2γ (9)

×




χ1,ns(z)In−1,s(γr2)e−iϕ

iχ2,ns(z)In,s(γr2)

χ3,ns(z)In−1,s(γr2)e−iϕ

iχ4,ns(z)In,s(γr2)




and require fulfillment of the normalization condition

4∑
µ=1

∞∫
−∞

χ+
µ (z)χµ(z)dz = 1

for the discrete spectrum of the longitudinal motion or
fulfillment of the normalization condition

4∑
µ=1

∞∫
−∞

χ+
µ (z, k1)χµ(z, k2)dz = δ(k1 − k2)

for the continuous spectrum. Here, I are radial func-
tions expressed in terms of Laguerre polynomials Q
as

In,s(ρ) =
1√
n!s!

e−ρ/2ρ(n−s)/2Qn−s
s (ρ), (10)

where

Qm
k (ρ) = eρρ−m dk

dρk
(e−ρρk+m),

n is the principal quantum number, s is the radial
quantum number, In,n(0) = 1 and In,s(0) = 0 for
n �= s, and I−1,0(ρ) ≡ 0. In order to calculate the
change in the probability of the allowed β− decay, as

given by Eqs. (2) and (3), it is necessary to estimate
the change in the electron density at the position of
the nucleus—that is, at the origin of coordinates.
We will make use of the condition that the motion
of an electron along the magnetic-field direction is
slow (adiabatic) in relation to its rotation in the plane
orthogonal to the magnetic field, this being equivalent
to the smallness of the longitudinal-motion energy in
relation to the transverse-motion energy (7).

For a zero-order approximation, we consider a
solution to Eq. (8) without an electric field. In this
case, the functions χµ(z) in (9) assume the form [20]



χ1

χ2

χ3

χ4




=
eikzz

4
√

π




√
1 + σ/E0(A1 + A2)

σ
√

1 − σ/E0(A2 − A1)√
1 + σ/E0(A1 − A2)

σ
√

1 − σ/E0(A1 + A2)




, (11)

where σ = ±1 is a number that characterizes the
electron spin state (spin projection onto the magnetic-
field direction) and

A1 =
√

1 + kz/E, A2 = σ
√

1 − kz/E (12)

with

E =
√

1 + k2
z + 4nγ, E0 =

√
1 + 4nγ.

For a solution unperturbed by the electric field, we
define the transverse-motion-averaged Coulomb po-
tential as

Φns(z) =

2π∫
0

∞∫
0

(
ψ+

ns
αZ√

z2 + r2
ψns

)
dϕrdr. (13)

Substituting the solution specified by Eqs. (9)
and (11) into (13) and going over to the variable ρ =
γr2, we arrive at

Φns(z) =
1
2
αZ

√
γ (14)

×
∞∫
0

(
1 + σ

E0

)
I2
n−1,s (ρ) +

(
1 − σ

E0

)
I2
n,s(ρ)√

γz2 + ρ
dρ.

On the basis of (14), one can readily establish the
following properties of the functions Φns(z):

(i) The functions Φns(z) are even.
(ii) In the region z > 0, they are monotonic [the

derivatives Φ′
ns(z) are negative].

(iii) At the origin, z = 0, the functions Φns(z) are
finite, since the integral

∫ ∞
0 ρ−1/2I2

n,s(ρ)dρ is finite,
and Φns(0) = CnsαZ

√
γ, the constants Cns being

henceforth independent of the parameters Z and γ.
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(iv) The asymptotic behavior of Φns(z) for z �
rL is independent of the quantum numbers n and s:
Φns → αZ/|z|.

In just the same way as in the nonrelativistic case
(see [5]), we can therefore derive the required estimate
by using the approximation

Φns(z) ≈ αZ

|z| + ans
, (15)

where the parameter ans = αZ/Φ(0) = (Cns
√

γ)−1

is on the order of the Larmor radius of the electron
[see Eq. (6)].

By using this approximation, we find from (8) and
(9) that the functions χµ satisfy the equations

[E ∓ 1 + Φns(z)]χ1,3 + i∂zχ3,1 −
√

4nγχ4,2 = 0,
(16)

[E ∓ 1 + Φns(z)]χ2,4 − i∂zχ4,2 −
√

4nγχ3,1 = 0.

In the field configuration considered here, the polar-
ization tensor is not a conserved quantity, in contrast
to what occurs in the case of a constant magnetic field
[20] in the absence of an electric field. Nevertheless,
the projection of the total angular momentum onto
the magnetic-field direction, Jz = −i∂ϕ + 1

2σ3 (σ3 is
a Pauli matrix), remains an integral of motion. The
solution specified by Eq. (9) is an eigenfunction of
the operator Jz , the corresponding eigenvalue being
(n− s− 1/2). In order to construct a general solution,
we can make use of a parameter that is similar to the
polarization σ (11). In the set of Eqs. (16), we make
the substitution



χ1

χ2

χ3

χ4




=
1√
2




√
1 + σ/E0f1(z)

σ
√

1 − σ/E0f2(z)

−√
1 + σ/E0f2(z)

σ
√

1 − σ/E0f1(z)




, (17)

where, as in (11), σ = ±1 (in the present case, this
is a parameter rather than the spin projection) and
E0 =

√
1 + 4nγ. Going over from the variable z to the

variable x = k(|z| + ans) and retaining the leading
term in the expansion of Φ(z) in powers of 1/z, we
find that the functions f1,2 satisfy the set of equations[

E + σE0

k
+

αZ

x

]
f2(x) = if ′

1(x), (18)[
E − σE0

k
+

αZ

x

]
f1(x) = if ′

2(x).

For bound states (discrete spectrum), in which case
E < E0, this set of equations reduces to the Whit-
taker equation with k = 2EαZ/m. Specifically, we

have

f ′′
xx(x) +

[
−1

4
+

m

x

]
f(x) = 0 (19)

under the condition

E2 = E2
0

[
1 +

(
αZ

m

)2
]−1

=
1 + 4nγ

1 + (αZ/m)2
< E2

0 .

(20)

Solutions to this equation were studied in [1, 5, 19]. In
the semiclassical case, the spectrum given by Eq. (20)
is broken down into the sum of the transverse-motion
energy 2nγ and the longitudinal-motion energy
−1/2(αZ/m)2 . For the discrete spectrum, the Whit-
taker functions Wm,1/2 are solutions to Eq. (19). The
quantum number m characterizing longitudinal mo-
tion (it must not be integral) is determined from the
requirement that the solution f(z) be continuous at
z = 0—that is, at x0 = 2EαZans/m, Wm,1/2(x0) =
0 for the odd functions f(z) or W ′

m,1/2(x0) = 0 for
their even counterparts. We are interested in the
nonzero density of electron states at the position of
the nucleus—that is, the even functions f(z), for
which m is determined from the condition

m = 2EαZ
ans

qm
=

2EαZ

Cns
√

γqm
, (21)

where qm are zeros of the derivative of the Whittaker
function Wm,1/2.

For the continuous spectrum (the respective mo-
tions are not localized), in which case E > E0, the set
of Eqs. (18) leads to the equation

f ′′
xx +

[
1 +

2EαZ

kx

]
f = 0, (22)

the dispersion equation for it having the form

E2 = E2
0 + k2 = 1 + 4nγ + k2. (23)

At large distances, the asymptotic behavior of solu-
tions to Eq. (22), f(x) ≡ f(kz) ∼ eikz, coincides with
the solutions in (11) in the absence of an electric field.
Similarly to (21), the condition of continuity of the
even functions requires fulfillment of the relation

f ′(kans) ≡ f ′(k/Cns
√

γ) = 0. (24)

3. PROBABILITY OF ALLOWED β− DECAYS
IN A MAGNETIC FIELD

The solutions obtained above will now be analyzed
with the aim of estimating the change in the β−-
decay probability upon the application of a super-
strong magnetic field.
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3.1. Absence of an Electric Field
Only continuum states are possible in this case,

which is specified by Eqs. (9), (11), and (12). Pre-
cisely two states corresponding to s = n and s = n −
1 and having a nonzero density at the position of the
nucleus involved (r = 0, z = 0) exist at each value of
the principal quantum number n (this is not so only
for the n = 0 level, in which case there is one state,
that of s = 0). The density of each pair of such states
at the position of the nucleus is independent of the
energy E and is proportional to the magnetic field [see
Eq. (9)],

ψ+
n ψn = γ/(2π2). (25)

From the spectrum in (12), it is clear that, at a given
total electron energy E, the principal quantum num-
ber can take values in the range from 0 to Nmax, where

Nmax = (E2 − 1)/(4γ). (26)

It follows that, at a rather high energy, E � γ, the
density of continuum states in the absence of an elec-
tric field is independent of the magnetic-field strength.
Specifically,

ψ+
EψE ∼

Nmax∑
n=1

ψ+
n ψn (27)

∼ Nmaxψ
+
n ψn ∼ (E2 − 1)/(8π2),

which is in accord with the results presented in [6].

3.2. Continuous Spectrum in the Electric Field
of a Nucleus

Equation (22) does not explicitly involve the
magnetic-field parameter γ. Therefore, the change
in the magnetic field according to γ → γλ leads to
a similar change in the solutions; that is, the function
f(x) does not change, but the values of the wave
vector k, which are determined by Eq. (24), increase
as follows: k → k̃ = k

√
λ. Using the normalization

condition for the function χ(z) and considering
that the Dirac delta function possesses the property
δ(k

√
λ) = δ(k)/

√
λ, we find that, in response to a

change in the magnetic field, the amplitude changes
as χ0 → χ̃0 = χ0

4
√

λ:

δ(k1 − k2) =

∞∫
−∞

χ̃+(z, k1)χ̃(z, k2)dz (28)

=
χ̃2

0

χ2
0

∞∫
−∞

χ+(z, k̃1)χ(z, k̃2)dz

=
χ̃2

0

χ2
0

δ(k̃1 − k̃2) =
χ̃2

0√
λχ2

0

δ(k1 − k2).

It follows that, instead of (25), we obtain

ψ+
n ψn =

γ

2π2

√
γ

γ0
, (29)

where γ0 ∼ α2, which, with allowance for (26), leads
to the magnetic-field dependence of the density of
continuum states:

ψ+
EψE ∼

Nmax∑
n=1

ψ+
n ψn ∼ E2 − 1

8π2

√
γ

γ0
. (30)

In other words, an increase in the magnetic-field
strength leads not only to the compression of the elec-
tron cloud owing to a decrease in the Larmor radius
but also to an increase in the effective electric-field
potential (14). This in turn leads to the compression
of the electron distribution in the direction along the
magnetic field.

3.3. Discrete Spectrum (Bound States)
in the Electric Field of the Nucleus

The solution to Eq. (19) does not involve the fea-
tures of the field. From the similarity of the solutions
f(x) and the normalization condition for χ(z),

∞∫
−∞

χ+(z)χ(z)dz (31)

= 2χ2
0

∞∫
x0

f+(x, k)f(x, k)
dx

k
≈ 2χ2

0

k
= 1,

we find that the function χ(z) has the form

χ2
0 =

EαZ

m
, (32)

where m is the quantum number of longitudinal mo-
tion. Therefore, the density of states in the discrete
spectrum (characterized by the quantum numbers n
and m) at the position of the nucleus is given by

ψ+
nmψnm =

1
π

γ
EαZ

m
>

1
π

γ
αZ

m
. (33)

It is well known that, in the three-dimensional prob-
lem of motion in the Coulomb potential (without a
magnetic field), which is spherically symmetric, the
density of a hydrogen-like orbit at the center is

ψ+
mψm ∼ 1

π

(
αZ

m

)3

. (34)

A comparison of expressions (33) and (34) reveals
that, in the absence of a magnetic field, the density of
excited-electron orbits at the position of the nucleus
decreases very fast with increasing orbit number in
proportion to m−3 (34); therefore, there is virtually
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no decay to excited bound states in this case. In
the presence of an external magnetic field, β− decay
to bound states becomes significant in the case of
transitions to orbits of large quantum number, which
are free for a neutral atom inclusive [see Eq. (33)].
Formally, the sum

∑
1/m is divergent, but, in prac-

tice, summation should be cut off at levels for which
the characteristic longitudinal size of the electron-
density variation reaches the characteristic scale of
the external-magnetic-field variation.

Substituting (33) into (3), we find that the relative
increase in the probability of electron beta decay be-
cause of transitions to bound states, λbH/λc, in the
presence of an external magnetic field H is

λbH

λc
∼ 2π(γαZ)

Nmax∑
n=1

M∑
m=1

1
m

(U − Enm)2

f(Z,U)
, (35)

where Enm is the energy of the bound state specified
by the quantum numbers n and m (20), U is the
endpoint energy of electron beta decay, and Nmax =
(U − 1)/(4γ).

The relative increase in the probability of electron
beta decay because of transitions to bound states in
the case of a full ionization of the atom being consid-
ered in the absence of a magnetic field is [9, 10]

λb

λc
∼ 2π(αZ)3

(U − 1 + ε)2

f(Z,U)
, (36)

where ε is the electron binding energy in the re-
spective orbit, ε � 1. A comparison of (35) and (36)
reveals that the probability of decay to a bound state
in a superstrong magnetic field, γ � α2 [see Eq. (6)],
exceeds the probability of decay to a bound state in a
fully ionized atom for γ > (αZ)2.

The above estimates were obtained for a hydrogen-
like orbit. This approximation is also applicable to
highly excited (Rydberg) states if one electron of a
multielectron atom is in an excited state [21]. Since
the increase in the probability of electron beta decay
is due primarily to transitions to highly excited bound
states, the above conclusion is qualitatively applicable
to the decay of a nucleus in an atom.

The β−-decay probability may change not only
because of the increase in the density of free electron
states but also because of the change in the endpoint
energy of β− decay.

4. CHANGE IN THE ENDPOINT ENERGY
OF ELECTRON BETA DECAY

IN A SUPERSTRONG MAGNETIC FIELD

In the electron beta decay of a nucleus entering
into the composition of an atom and occurring in
the external magnetic field, the β−-decay endpoint

energy U differs from its counterpart U0 for the re-
spective nucleus in an unperturbed atom [16, 17].
Since a nucleus surrounded by electrons interacting
with it appears both in the initial and in the final state,
the β−-decay endpoint energy U is the difference of
the total internal energies of the initial and final states
of the system with allowance for the ionization energy
of the atom; that is,

U0 = Un + [I0
f − I0

i ], (37)

U = Un + [IH
f − IH

i ],

U = U0 − [I0
f − I0

i ] + [IH
f − IH

i ],

where Un is the difference of the nuclear energies,
I > 0 is the total ionization energy of the atom being
considered, the superscripts label respective quanti-
ties for the unperturbed atom (“0”) or the atom in
a magnetic field (“H”), and the subscripts label the
analogous quantities in the final atomic (ion) state
appearing as the product of electron beta decay (“f”)
or in the initial atomic state (“i”).

Within the Thomas–Fermi model, the total ion-
ization potential of an unperturbed multielectron
atom whose charge number is Z is given by [22]

I0(Z) ≈ 20.8Z7/3 [eV], (38)

whence it follows that

I0
f (Z) − I0

i (Z) ≈ 48.5Z4/3 [eV]. (39)

The behavior of the electron shell of an atom in a
superstrong magnetic field [see (5)] was considered
in [2, 3]. Under the condition H � H0Z

3, the total
ionization energy of an atom (or an ion) having a
charge number Z and containing K electrons is [2]

IH(Z,K) ≈ K

8
L2(4Z − K + 1)2, (40)

L =
1
2

ln
H

H0Z3
.

To a logarithmic precision, L ≈ const, we find from (40)
that

IH
f (Z) − IH

i (Z) ≈ 3L2Z(Z + 1) (41)

≈ 81.6L2Z(Z + 1) [eV].

From a comparison of expressions (39) and (41),
one can see that the ionization energy of an atom
in a rather strong external magnetic field grows with
increasing charge number of the nucleus faster than
its counterpart for the respective unperturbed atom.
Therefore, the endpoint energy U for the electron beta
decay of the nucleus of an atom in a superstrong
external magnetic field [see (37)] is higher than the
respective β−-decay endpoint energy for the unper-
turbed atom.
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An increase in the endpoint energy of electron beta
decay leads to an increase in its probability (1). The
effect may be substantial for decays characterized by
a low endpoint energy. It is well known from [13]
that a complete ionization of the 187Re atom leads
to the increase in the endpoint energy of electron
beta decay from 2.66 keV for the neutral atom to
72.97 keV. This leads to the opening of the channel of
decay to the 9.75-keV excited level of 187Os, with the
result that the probability of 187Re electron beta decay
increases by a factor of 109. From (41), it follows that,
in the case where the model specified by Eqs. (40)
is applicable, the probability of 187Re electron beta
decay will increase to the same extent upon placing
the neutral atom in a superstrong magnetic field such
that L ∼ 1/2 (H > 3H0Z

3 ∼ 3 × 1015 Oe).
In the decay of the nucleus of a completely ionized

atom and in the cases where the magnetic field is
not very high, H < H0Z

3, and where the energy of
electron beta decay is much higher than the change
in the total ionization energy of the atom involved, the
change in the respective beta-decay endpoint energy
is insignificant and does not therefore lead to a change
in the decay probability. In those cases, the change in
the probability of electron beta decay in an external
magnetic field is due entirely to the change in the
density of free electron states at the position of the
nucleus [see Eq. (35)].

Thus, we have seen that the probability of the
electron beta decay of a neutral atom and an ion in
a superstrong constant uniform magnetic field in-
creases.
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