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1. Intoduction

(1) The only valid (necessary and sufficient) condition for β-stability of a nucleus
is the minimum value of the mass of the atom (not of the nucleus) on the
isobar line (i.e., atomic weight = const.). This condition holds true for all
known isotopes without exception.

(2) The condition of nuclear stability and the decay schemes of unstable nuclei
depend on the state of the electron shells. Atom ionization and other pertur-
bations in electron shells (caused, e.g., by magnetic fields) not only changes
the decay periods of unstable nuclei,1,2 but also alters decay schemes3 and
modifies the stability condition. For example, the 163Dy, 193Ir, 205Tl nuclei,
which are stable in neutral atoms, become β-active when atoms are com-
pletely ionized. This means that by affecting electron shells one can alter
conditions of nuclear β-stability and thus initiate nuclear transmutations by
means of weak interactions.

(3) We have developed a phenomenological model for the low-energy nuclear
transmutation. According to the above observations, the probability of
a nuclear reaction can significantly increase under the effects exerted on
atomic electron shells. Without considering specific mechanisms of nuclear
transformations, we have managed to determine the possible transforma-
tion products only using basic conservation laws (the energy and electric,
baryon, and lepton charges). Amazingly, such a simple model yields results
in qualitative agreement with experimental data.

2. Condition of Nuclear β-stability

The discussion of the conditions for β-stability of nuclei began at the very dawn of
nuclear physics.4,5 However, up to the 1950s, because there was not sufficient ac-
curacy or experimental data on the masses of nuclear isotopes, it was not possible
to assess the correspondence between theoretical forecasts and experimental data.
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Inasmuch as at that time the accuracy of available experimental data did not always
allow researchers to distinguish between nuclear masses and atomic masses, the con-
ditions of the “minimum nuclear mass,” “minimum atomic mass,” and “maximum
nuclear binding energy” on the isobar line seemed to be identical, while deviations
from the assumed stability conditions were considered as exceptions.4,5 Nowadays,
thanks to available data,6 it is possible to formulate (and check) an accurate condi-
tion for nuclear stability. The analysis of the database has shown that the stability
conditions such as “minimum nuclear mass”7,8 or “maximum binding energy”9 on
the isobar line are not accurate.

The only condition for β-stability of the nucleus in a neutral atom, which is
absolutely accurate, is the requirement that the atom mass attains its minimum on
the isobar.10,11

Let us discuss this statement in more detail. Consider the stability of a nucleus
with respect to processes not involving a change in the number of nucleons in the
nucleus, that is, those occurring due to weak interactions, namely, the electron (β−)
or positron (β+) β-decay and the K-capture:

A
ZX → A

Z+1Y + e− + ν̄e + Q1,
A
Z X → A

Z−1Y + e+ + νe + Q2,
A
ZX + e− → A

Z−1Y + νe + Q3,

(1)

where νe and ν̄e are the electronic neutrino and antineutrino, respectively, and X
and Y are the nuclei with the atomic weight A and charge Z (in the electron charge
units).

It is well known10,11 that the energy produced (Q > 0) or absorbed (Q < 0)
in such nuclear reactions can be determined using the mass difference between the
initial nuclei and the reaction products:

Q = MN(AX,ZX) − MN(AY,ZY) ∓ me, (2)

where MN (A, Z) is the mass of the nucleus A
ZX, me is the electron rest mass; a “−”

corresponds to β±-decay (Q1 and Q2), and a “+” to the K-capture (Q3). As the
K-capture always involves less energy than the positron β+-decay (Q3−Q2 = 2me),
the possibility of a positron β+-decay does not alter the nuclear stability condition.

MN(A, Z) = (A − Z) mn + Z mp − WN(A, Z), (3)

where mp and mn are the rest masses of the proton and neutron, respectively. The
binding energy WN is the energy that is to be “pumped” to the nucleus to separate
it into constituent nucleons. Expression (2) is valid in the case where the nucleus has
no electron shell. When a nucleus decays as a part of a neutral atom, the binding
energy of electrons is to be taken into account. Since the first ionization potential
is not over 25 eV, this energy can be neglected when compared to the accuracy to
which the nuclear binding energy is measured (∼1 keV). In this approximation, the



3

energy produced in the K-capture and electron β−-decay of a neutral atom equals:

Q = MA(AX,ZX) − MA(AY,ZY), (4)

where

MA(A, Z) = (A − Z) mn + Z (mp + me) − W (A, Z) (5)

is the mass of the atom and W is the binding energy of the nucleus in the atom
taking into account the full atom ionization energy I(Z):

W (A, Z) = WN(A, Z) + I(Z). (6)

This is the energy needed to separate a neutral atom into the constituent protons,
neutrons, and electrons.

With an accuracy of Z IH (IH = 13.6 eV is the hydrogen ionization potential),
which for Z < 100 is not worse than the accuracy to which the nuclear binding
energy is measured, the energy defined in this way is the same as the energy needed
to separate the nucleus into neutrons and hydrogen atoms:

MA(A, Z) = (A − Z) mn + Z MH − W (A, Z), (7)

where MH is the mass of the hydrogen atom. Historically, the nuclear binding energy
was introduced for calculating the energy produced in nuclear reactions involving
neutral atoms. Therefore, tables6 quote these atomic energies W , which include the
full ionization potential I(Z), rather than the nuclear WN values. For determining
the energy of the nucleus, one can also use the mass defect ∆M , which is related
to MA as follows6:

MA(A, Z) = A ma.e.m. + ∆M(A, Z), (8)

where ma.e.m. ≈ 931.5 MeV is the atomic mass unit; for the mass defect, the nor-
malization ∆M(12C) = 0 was chosen.

It is well known10,11 that for a nucleus to be β-stable, it is sufficient that all
possible decay channels be closed for energy reasons (Q < 0). Hence, the sufficient
condition for β-stability of a nucleus can be formulated as the minimum atomic mass
MA(A,Z) [which is equivalent to the minimum mass defect ∆M(A, Z)], including
all local minima on the isobar (A = const.).

Note that this requirement involves the minimum atomic mass MA(Z) and not
the minimum nuclear mass MN(Z) or the maximum binding energy W (Z) (these
conditions are not the same!). The functions MA(Z), MN(Z), and W (Z) are related
to each other in the following way:

MN(Z) = MA(Z) + I(Z) − Z · me,

−W (Z) = MA(Z) − A · mn + Z · m̃,
(9)

where m̃ = mn − mp − me = 782.3 keV.
Since the functions MN(Z) and W (Z) differ from MA(Z) on the isobars (A =

const.) by terms monotonic in Z (9), then, in qualitative terms, all of these three
functions (MA, MN, W ) feature the same behavior, but the minima of MN(Z) may
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be shifted to larger Z and the binding energy W (Z) maxima may be shifted to
smaller Z with respect to the minima of the MA(Z) function [the latter are the
same as the minima of ∆M(Z)].

The dependence of the binding energy on the nuclear charge can be qualitatively
described by the well-known semi-empirical Weizsäcker formula:11

MA(A, Z) = A mn − Z m̃ − aV A + aS A2/3 + aC
Z(Z − 1)

A1/3

+aSYM

(
A
2 − Z

)2

A
− aP

δ

AP − I(Z), (10)

where aV = 15.75 MeV, aS = 17.8 MeV, aC = 0.71 MeV, aSYM = 94.8 MeV and
aP = 34 MeV are the coefficients of the nuclear energy: the volume, surface,
Coulomb, symmetry, and coupling energy, respectively. The coefficient δ describes
the coupling effect: δ = 0 for the nuclei with odd A, δ = 1 for even-even nuclei (an
even number of neutrons and an even number of protons), and δ = −1 for odd–odd
nuclei. The exponent P in the last term (coupling) varies, depending on the author,
from 1/3 to 1.

Recall the well-known fact which follows from the Weizsäcker formula (10): on
isobars with odd A, MA(Z) is described by a parabola with one minimum (δ = 0)
(Fig. 1a); on isobars with even A, MA(Z) is described by a broken line confined
by two parabolas which correspond to even Z (δ > 0) and to odd Z (δ < 0)
(Fig. 1b, c). In the latter case, the function MA(Z) can develop (depending on
A) one, two, or three minima. Figure 1b illustrates the case when, for even A, the
parabola minimum corresponds to even Z, and Fig. 1c shows the parabola minimum
corresponding to odd Z.

MAMAMA

Z

(a) (b) (c)

Z0 Z0

2β

Figure 1. Dependence of the atomic mass on the charge. Z0 is the parabola minimum. (a) For
odd atomic mass A, (b) for even A and even Z0, and (c) for even A and odd Z0.

A straightforward analysis of the database6 shows that all stable isotopes with-
out an exception correspond to minima of atomic masses MA(Z) on the isobars.
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Moreover, all β-decay and K-capture processes that are energetically allowed are re-
alized in nature (no other prohibitions are involved). Thus the following statement
is correct.

For a nucleus in a neutral atom to be β-stable (stable with respect to single
β±-decay and K-capture processes), it isnecessary and sufficient that this isotope
correspond to a minimum of the atomic mass on the isobar (A = const.).

Note that all 12 natural isotopes that do not correspond to a minimum of MA(Z)
are unstable. Even though they are long lived, nevertheless they are not stable
(Table 1). On the other hand, there are no natural β-stable isotopes with atomic

Table 1. Unstable natural isotopes.

Natural Channels of Energy of Half
Isotope abundance (%) nuclear decay nuclear transition (keV) life (years)
40K 0.012 β− 89.3 1311 1.277 × 109

ε(β+) 10.7 1505
48Ca 0.187 β− 278 6 × 1018

50V 0.25 β− 17 1037 1.4 × 1017

ε(β+) 83 2208
87Rb 27.85 β− 283 4.75 × 1010

96Zr 2.8 β− 3.8 × 1019

113Cd 12.22 β− 316 7.7 × 1015

115In 95.77 β− 496 4.4 × 1014

123Te 0.9 ε 53 > 1013

138La 0.09 β− 33.6 1044 1.05 × 1011

ε(β+) 66.4 1738
176Lu 2.59 β− 1192 3.78 × 1010

187Re 62.6 β− 2.66 4.35 × 1010

180Tam 0.012 γ 75.3 1.2 × 1015

mass 5 or 8, as they are unstable with respect to decay: 5He → 4He + n, 8Be →
24He. For atomic masses A > 141, α-decay becomes energetically allowed, while for
some isotopes with atomic masses in the 210 > A > 141 range, it is forbidden, and
all isotopes with A > 209 are α-active. The isotope 180Tam, which is observed in
nature, is a long-lived (1.2 × 1015 years) isomeric excited state of the nucleus. The
very long half-life time is due to the large difference of spins in the isomeric (9−)
and ground (1+) states.

The analysis of the database shows that the assumption that the minimum
nuclear mass MN(Z) as a sufficient condition for β-stability is not accurate. For
example, more than 30 isotopes that correspond to minima of the nuclear mass
MN(Z) on the isobars are unstable with respect to the K-capture.

The following example describes a typical situation: the minimum atomic mass
for the isobar with the atomic weight 55 is attained on only one stable manganese
isotope 55Mn, while the nuclear mass attains its minimum on the unstable isotope
55Fe (the decay period is 2.7 years).

The 55Mn nucleus is heavier than the 55Fe nucleus:

MN(55Mn) − MN(55Fe) ≈ 280 keV,
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whereas the 55Mn atom is lighter than the 55Fe atom:

MA(55Fe) − MA(55Mn) ≈ 231 keV.

3. The β-stability of Ionized Atoms

Further, we discuss how the changes in electron shells, that is, changes whose ener-
gies are much smaller than nuclear binding energies, can cause modifications to the
nuclear stability condition. To determine the relation between the charge Z and
the mass A of a stable isotope, let us find the minimum of the atomic mass MA(Z)
on the isobar. The atomic mass can be represented in the form:

MA(A, Z) = C1(A) + C2(A) (Z − Z0)
2 − δ(A, Z) aP A−P , (11)

where

Z0 =
A

2
aSYM + aC A−1/3 + m̃

aSYM + aC A2/3 ,

C2(A) =
aSYM

A
+ aC A−1/3,

C1(A) = A(mn − aV) + aS A2/3 − Z2
0 C2(A) + aSYM

A

4
. (12)

Inasmuch as Z can only be integer, the minimum of MA(Z) is attained at an integer
Z nearest to Z0.

When the ionization potential of an electron shell changes (due to, e.g., the effect
of a strong magnetic field), the stability condition has a similar form, but involves
the following replacement m̃ → m̃ + O(me).

With O(me) � aSYM = 94.8 MeV, the difference between these two conditions
seems to be negligible. However, in the cases when Z0 is close to a half-integer
value, the perturbation, even as small as me/aSYM, can change the integer nearest
to Z0 by unity. This means that it is the nucleus of the neighboring isotope that
will become stable.

Using the Thomas–Fermi model for the atom ionization potential:12

I(Z) ∼= 20.8 Z7/3 eV (13)

and the formula for the ionization potential of hydrogen-like atoms (consisting of a
nucleus and a single electron):12

I1e(Z) = 13.6 Z2 eV, (14)

we deduce that the difference between ionization potentials of the neighboring ele-
ments

I(Z+1) − I(Z) ∝ Z
4/3 (15)

increases slower than the ionization potential of the hydrogen-like atom and that
basically for all atoms (Z > 7):

I(Z + 1) − I(Z) < I1e(Z) < I1e(Z + 1). (16)
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Hence, the energy of the β−-decay of a fully ionized nucleus to a bound state of the
electron equals:

Q = Q0 + I(Z) − I(Z + 1) + I1e(Z + 1) > Q0, (17)

where Q0 is the decay energy of the nucleus in the neutral atom. This means that
when the nucleus is fully ionized, the β−-decay to the bound state always yields
more energy that the β−-decay of the neutral atom.

The analysis of the database shows that some stable nuclei of neutral atoms
163Dy, 193Ir, 205Tl

become unstable with respect to the β−-decay to a bound state when they are fully
ionized. This effect has been observed experimentally.1

When the atom is completely ionized, the nuclear stability condition always
shifts to larger Z. For nuclei emitting delayed neutrons this results, in particular, in
the increase of the fraction of delayed neutrons, as the nuclei become more neutron-
redundant upon ionization.

4. A Phenomenological Model of Nuclear Transformation

We have shown that the conditions can be created (e.g., by application of a strong
magnetic field) when the distortion of electron shells would result in a significant
increase in the probability of nuclear processes involving weak interactions.

Therefore, we consider the question whether the isotopic composition currently
observed in nature is final and equilibrium. The changes in the isotopic composition
of elements toward 56Fe, due to fission and fusion reactions accompanied by great
energy changes is known to be energetically favorable.

Below we show that within a small (on the nuclear scale) energetic interval, a
plethora of states can exist which are populated in nature in a very uneven way.
Since the nuclear states being considered basically have the same energies (to within
the accuracy of measurements), one nuclear state can transmute to another in a
resonant transition without emission of a significant amount of energy (in the nuclear
scale), which is without radioactivity. In standard nuclear reactions, the final nuclei
are usually produced in excited states as a result of collisions between high-energy
nuclei. Because of that usual nuclear reactions feature radioactivity phenomena. We
consider non-standard nuclear transitions between initial and final states, which
have the same nuclear energies. It should be stressed that we only discuss the
question whether low-energy transitions are allowed by conservation laws, leaving
aside the mechanisms underlying such transitions.

Consider hypothetical collective nuclear transformation processes involving weak
interactions, which satisfy the following equation:∑

i

Ai

Zi
Xi →

∑
j

Aj

Zj
Yj + ke− + kν̄e + Q, (18)

where Xiand Yj are the nuclei with the atomic weight Ai and charge Zi, respectively,
a special case of which are neutrons (A = 1, Z = 0); k is the number of the electrons
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involved in the reaction; kcan be positive (in β−-decay), negative (in K-capture),
or equal to zero (in the case of strong interactions alone). Let us assume that
generically some of the Xi (or Yi) nuclei may be identical.

Define a set � of nuclear ensembles {Xi}, that is, an ensemble of nuclei is an
element of �. Then transformation is a transition between two elements of the
set �. The development of the phenomenological model for such transformation
reduces then to the following:

in the set � of the ensembles of nuclei, it is necessary to find the ensembles
{Yi}, the energies of which are closest to those of the initial ensemble {Xi}
provided that the baryon charge (the number of nucleons), the electric charge
and the lepton charge are conserved.

Recall that neutrinos take away part of the released energy Q. However, the
energy scale in the case being considered is significantly smaller than in usual non-
collective reactions involving weak interactions: in the hypothetical collective pro-
cess, a neutrino may have any small momentum. The first attempt to develop
such phenomenological model of nuclear transformations was made by Russian re-
searchers in Dubna (Kuznetsov’s group).13

Each ensemble of nuclei {Xi} is described by a set of integers {ai} ≡ �a, where
ai is the number of nuclei Xi in the ensemble; the unit vector �δicorresponds to an
ensemble comprising only one nucleus Xi.

In the set � we define a norm:

‖�a‖ ≡
∑

i

aiAiqi,

qi ≡ q(Xi) ≡ ∆M(11H) − ∆M(Xi)
Ai

=
W

Ai
−

(
1 − Z

Ai

)
m̃, (19)

where W is the binding energy of the nucleus and Z is its charge m̃ = mn−mp−me =
782.3 keV. Using the data on isotopes, one can see readily that q(X) > 0 for all
known isotopes (including unstable ones), and the maximum of q(X) is attained for
56Fe.

The introduced norm has the following physical meaning: it equals the energy
needed to separate the atom into hydrogen atoms, i.e. to separate the nucleus
into the constituent protons and neutrons with the subsequent transformation of
all neutrons into protons:

Xi → Ai
1
1H + (Ai − Zi) e− + (Ai − Zi) ν̄e − Q, Q =

∥∥∥δ̃i

∥∥∥ .

Actually, the ensemble consisting of hydrogen atoms is used as the origin (zero
norm).

When comparing the binding energies W of two nuclei, 3He and 3H (tritium),
we determine that the binding energy of the stable nucleus 3He is lower than that
of the unstable one 3H.
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This apparent contradiction (larger binding energy is expected to correspond to
a more stable nucleus) is resolved when the considered norm is used:

In this formulation, the problem of modelling the transformation process is re-
duced to a search for ensembles {bi} ≡ �b, whose norm is close to the initial one
{ai} ≡ �a, i.e.:

∣∣∣
∥∥∥�b

∥∥∥ − ‖�a‖
∣∣∣ < ε, ε being small. One can check easily that the transi-

tion from the ensemble �a to the ensemble �b corresponds to a transformation of type
of the following form:∑

i

ai
Ai

Zi
Xi →

∑
i

bi
Ai

Zi
Xi + NH

1
1H + ke− + kν̄e + Q, (20)

where NH =
∑

i (ai − bi) Ai is the number of produced (NH > 0) or absorbed
(NH < 0) protons, k =

∑
i (ai − bi) (Ai − Zi) is the number of produced (k > 0) or

absorbed (k < 0) electrons, and Q =
∑

i (bi − ai) Ai qi is the produced (Q > 0) or
absorbed (Q < 0) energy.

The use of the proposed norm makes it possible to significantly simplify the task
of selecting the nuclear ensembles, as actually, when selecting �b, it is not necessary
to check that the electric and baryon charge conservation laws are observed as these
conservation laws are always observed owing to the specified conditions.

The search for the nearest ensembles is reduced to an algebraic problem. Note
that if one assumes that the binding energies and hence norms Q1 =

∥∥∥�δ1

∥∥∥ and

Q2 =
∥∥∥�δ2

∥∥∥ of two nuclei X1 and X2 are exactly known and can be expressed as
rational numbers, then the ratio Q1/Q2 can be expressed as a ratio of two integers
N2/N1. One can check easily that in this case two ensembles N1 X1 and N2 X2

have equal energies. This implies that the transition N1 X1 → N2 X2 + . . . can
occur without changes in energy. However, the coefficients obtained in this case (the
number of particles in each ensemble) can be so large that such a transformation
will be of no practical interest. The quoted example only illustrates the theoretical
possibility to find ensembles, which have very close energy values. In practice,
the numerical selection of the ensembles is restricted by the accuracy to which the
nuclear binding energy is measured (∆Q ∼ 1 keV).

Taking into account huge nuclear binding energies, the discrete nature and the
finite size of Mendeleev’s table, it is not a priori obvious that it is possible to find
different nuclear ensembles with the same number of nucleons and with nuclear
energies differing by values of the order of the electron chemical binding energy.
However, this is what we have succeeded in doing.

When developing the transformation model, the initial nuclear ensemble is di-
vided into groups called “clusters,” and the search for ensembles with the nearest
energy values is carried out separately for each cluster. The calculation model con-
tains a number of parameters: the range of considered energy changes in the cluster,
the cluster’s size, and the number of the nucleons transferred between the cluster’s
nuclei.

The number of ways in which an initial cluster containing N nucleons can be
“reshuffled” is ∼2N . Thus, it is so large that it is impossible to consider all con-



10

figurations. It seems to be reasonable to assume that the number of nucleons in
a cluster is limited by the closest geometrical neighbors, that is, it is not over 20.
This approach makes it possible to significantly reduce the number of combinations
involved in processing. The final calculation result is obtained by averaging all pos-
sible simplest transformations in clusters taking into account the statistical weight
of each cluster in accordance with the initial distribution of nuclei. The final nuclear
distribution shows what nuclei have appeared and what disappeared in the process
of transformation.

Note that the minimum number of cluster nuclei, for which a non-trivial solution
can be found, equals to three.

In order to determine the parameters of the phenomenological model that cor-
respond to experimental data, we have modelled the transformation of titanium foil
in water and glycerol in an argon atmosphere. In this case, the ensembles with
the minimum energy differences |Q| < 1 keV (with energy changes smaller than the
accuracy of the binding energy measurement) were as follows:

2 ·4922 Ti + 4 ·11 H → 4 ·42 He + 40
19K + 46

22Ti + e + o(1 keV),

51
23V + 48

22Ti + 18
8 O → 57

26Fe + 23
11Na + 37

17Cl + e + o(1 keV),

48
22Ti + 2 ·4018 Ar + 16

8 O → 15
7 N + 37

17Cl + 38
18Ar + 54

24Cr + o(1 keV),

2 ·4722 Ti + 2 ·4018 Ar + 12
6 C → 16

8 O + 34
16S + 46

20Ca + 2 ·4521 Sc + o(1 keV),

5 ·168 O + 2 ·126 C + e → 23
11Na + 2 ·11 H + 2 ·157 N + 20

10Ne + 29
14Si + o(1 keV),

6 ·5023 V + 3 ·136 C + 46
22Ti + 50

22Ti → 57
26Fe + 3 ·147 N + 42

20Ca + 6 ·4922 Ti − e + o(1 keV),

8 ·4822 Ti + 3 ·168 O + 6 · e → 9
4Be + 18

8 O + 4 ·4922 Ti + 2 ·5022 Ti + 52
24Cr + 57

26Fe + o(1 keV),

11·4822Ti+2·168 O+4·e → 4
2He+ 12

6 C+ 37
17Cl+7·4922Ti+ 53

24Cr+ 55
25Mn+ 56

26Fe+o(1 keV).

Note that the nuclear energies of the left-hand side and right-hand side nuclear
ensembles are the same (to within the accuracy to which the binding energy is
measured). This means that the energy changes in such nuclear transformations
are of the order of chemical energies.

It should be stressed that when solving such a problem, a large number of
combinations (105–106) is processed, and the examples quoted above are nothing
but illustrations. It would be incorrect to consider the quoted combinations as
nuclear reactions where a large number of nuclei collide. These examples describe
transitions between states of nuclei, the mechanism of such transition being obscure
as yet. One can only assume that some transition (possibly a resonant one) occurs
due to effects of a new interaction.

We have shown that there are nuclear ensembles consisting of stable nuclei,
which have identical electric and baryon charges and the energy values that are
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very close to each other. Hence, transitions between such ensembles do not violate
the known conservation laws and are not accompanied by radioactive emission of
energy. We do not consider the transformation mechanisms, but note that in the
resonance conditions, the probability of penetrating through a potential barrier does
not depend on its height or width.

This model needs detailed investigation by comparing experimental results with
the results of modelling for different parameters. Such studies are currently in
progress, but first it was necessary to find a qualitative effect predicted by the
model, which could be checked experimentally.

The numerical simulation of combinations, we have carried out, shows that when
a sufficient amount of vanadium is transformed, the isotopic composition of iron
should be distorted and shifted toward an increase in the 57Fe isotope content. This
feature is specific to vanadium and the result does not depend on the calculation
parameters: the quantitative ratio of iron isotopes changed, but the amount of 57Fe
was always significantly larger than that in the natural mixture of iron isotopes.
The proposed phenomenological model cannot make quantitative predictions for
the content of 57Fe. However, it predicts qualitatively an increase in the 57Fe
content as compared to that in the natural mixture of isotopes (2.2%), due to the
transformation of V. The experiment, in which titanium foil was exploded using the
electric charge in solutions of vanadium salts (VCl3 and NH4VO3), has shown that
the content of 57Fe in Fe shifts to larger values (to 3.7 ± 0.5%).

We have shown that even without developing a specific model for low-energy
nuclear transformation but using conservation laws alone, one can find examples of
nuclear ensembles that differ only by chemical scale energies.

5. Conclusions

(1) The only valid condition of β-stability of a nucleus is the minimum value of
the mass of the atom on the isobar.

(2) The condition of nuclear stability and the decay schemes of unstable nu-
clei depend on the state of the electron shells. Atom ionization and other
perturbations in electron shells (caused for example by magnetic field)

• not only change the decay periods of unstable nuclei,
• but also alter decay schemes
• and modify the stability condition.

(3) We have developed a phenomenological model for the low-energy nuclear
transmutation.
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